Question 12.7.1: Find the unique solution to the system x' = [x1 x2]' = [4 2 ...

Find the unique solution to the system

\mathbf{x}^{\prime}=\left(\begin{array}{l}x_{1} \\x_{2}\end{array}\right)^{\prime}=\left(\begin{array}{ll}4 & 2 \\3 & 3\end{array}\right)\left(\begin{array}{l}x_{1} \\x_{2}\end{array}\right)+\left(\begin{array}{l}e^{t} \\e^{2 t}\end{array}\right)=A \mathbf{x}+\mathbf{f}(t), \quad \mathbf{x}(0)=\left(\begin{array}{l}1 \\2\end{array}\right).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A fundamental matrix solution for the homogeneous system is

\Phi(t)=\left(\begin{array}{rr}2 e^{t} & e^{6 t} \\-3 e^{t} & e^{6 t}\end{array}\right)

(You should verify this.) Then

\Phi^{-1}(t)=\frac{1}{5}\left(\begin{array}{cc}e^{-t} & -e^{-t} \\3 e^{-6 t} & 2 e^{-6 t}\end{array}\right)

and, by equation (12), we have the particular solution

\mathbf{x}^{\prime}=A(t) \mathbf{x}+\mathbf{f}(t), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}

 

\begin{aligned}\varphi_{p} &=\frac{1}{5}\left(\begin{array}{rr}2 e^{t} & e^{6 t} \\-3 e^{t} & e^{6 t}\end{array}\right) \int_{0}^{t}\left(\begin{array}{cc}e^{-s} & -e^{-s} \\3 e^{-6 s} & 2 e^{-6 s}\end{array}\right)\left(\begin{array}{l}e^{s} \\e^{2 s}\end{array}\right) d s \\&=\frac{1}{5}\left(\begin{array}{rr}2 e^{t} & e^{6 t} \\-3 e^{t} & e^{6 t}\end{array}\right) \int_{0}^{t}\left(\begin{array}{c}1-e^{s} \\3 e^{-5 s}+2 e^{-4 s}\end{array}\right) d s .\end{aligned}

Since the integral of a vector function is the vector of integrals,

\begin{aligned}\varphi_{p}(t) &=\frac{1}{5}\left(\begin{array}{rr}2 e^{t} & e^{6 t} \\-3 e^{t} & e^{6 t}\end{array}\right)\left(\begin{array}{c}t-e^{t}+1 \\\frac{11}{10}-\frac{3}{5} e^{-5 t}-\frac{e^{-4 t}}{2}\end{array}\right) \\&=\left(\begin{array}{c}\frac{2}{5} t e^{t}-\frac{1}{2} e^{2 t}+\frac{7}{25} e^{t}+\frac{11}{50} e^{6 t} \\\frac{-3}{5} t e^{t}+\frac{1}{2} e^{2 t}-\frac{18}{25} e^{t}+\frac{11}{50} e^{6 t}\end{array}\right) .\end{aligned}

Note that \varphi_{p}(0)=0, which must be the case from the way in which we found \varphi_{p}. Next, from equation (9), we see that the unique solution is

\begin{aligned}\varphi(t) &=\Phi(t) \Phi^{-1}\left(t_{0}\right) \mathbf{x}_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) \mathbf{f}(s) d s \\&=\varphi_{h}(t)+\varphi_{p}(t)\end{aligned}

 

\begin{aligned}\varphi(t) &=\Phi(t) \Phi^{-1}(0) x_{0}+\varphi_{p}(t) \\&=\frac{1}{5}\left(\begin{array}{rr}2 e^{t} & e^{6 t} \\-3 e^{t} & e^{6 t}\end{array}\right)\left(\begin{array}{rr}1 & -1 \\3 & 2\end{array}\right)\left(\begin{array}{l}1 \\2\end{array}\right)+\varphi_{p} \\&=\frac{1}{5}\left(\begin{array}{rr}2 e^{t} & e^{6 t} \\-3 e^{t} & e^{6 t}\end{array}\right)\left(\begin{array}{r}-1 \\7\end{array}\right)+\varphi_{p}\end{aligned}

 

\begin{aligned}&=\left(\begin{array}{c}-\frac{2}{5} e^{t}+\frac{7}{5} e^{6 t} \\\frac{3}{5} e^{t}+\frac{7}{5} e^{6 t}\end{array}\right)+\left(\begin{array}{c}\frac{2}{5} t e^{t}-\frac{1}{2} e^{2 t}+\frac{7}{25} e^{t}+\frac{11}{50} e^{6 t} \\\frac{-3}{5} t e^{t}+\frac{1}{2} e^{2 t}-\frac{18}{25} e^{t}+\frac{11}{50} e^{6 t}\end{array}\right) \\&=\left(\begin{array}{c}\frac{2}{5} t e^{t}-\frac{1}{2} e^{2 t}-\frac{3}{25} e^{t}+\frac{81}{50} e^{6 t} \\\frac{-3}{5} t e^{t}+\frac{1}{2} e^{2 t}-\frac{3}{25} e^{t}+\frac{81}{50} e^{6 t}\end{array}\right)\end{aligned}

Note, as a check, that \varphi(0)=\left(\begin{array}{l}1 \\ 2\end{array}\right).

Related Answered Questions

Differentiating the first equation and substitutin...