Question 1.5.12: Find the volume of the parallelepiped determined by the vect...

Find the volume of the parallelepiped determined by the vectors \left [ \begin{matrix} 2 \\ 1 \\ 1 \end{matrix} \right ] , \left [ \begin{matrix} -1 \\ -1 \\ 3 \end{matrix} \right ], and \left [ \begin{matrix} 1 \\ 0 \\ 2 \end{matrix} \right ].

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The volume V is

V = \left|\left\lgroup\left [ \begin{matrix} 2 \\ 1 \\ 1 \end{matrix} \right ]\times \left [ \begin{matrix} -1 \\ -1 \\ 3 \end{matrix} \right ] \right\rgroup \cdot \left [ \begin{matrix} 1 \\ 0 \\ 2 \end{matrix} \right ] \right| = \left|\left [ \begin{matrix} 4 \\ -7 \\ -1 \end{matrix} \right ] \cdot \left [ \begin{matrix} 1 \\ 0 \\ 2 \end{matrix} \right ] \right| = 2

Related Answered Questions