Find the volume of the parallelepiped determined by the vectors \left [ \begin{matrix} 2 \\ 1 \\ 1 \end{matrix} \right ] , \left [ \begin{matrix} -1 \\ -1 \\ 3 \end{matrix} \right ], and \left [ \begin{matrix} 1 \\ 0 \\ 2 \end{matrix} \right ].
Find the volume of the parallelepiped determined by the vectors \left [ \begin{matrix} 2 \\ 1 \\ 1 \end{matrix} \right ] , \left [ \begin{matrix} -1 \\ -1 \\ 3 \end{matrix} \right ], and \left [ \begin{matrix} 1 \\ 0 \\ 2 \end{matrix} \right ].
The volume V is
V = \left|\left\lgroup\left [ \begin{matrix} 2 \\ 1 \\ 1 \end{matrix} \right ]\times \left [ \begin{matrix} -1 \\ -1 \\ 3 \end{matrix} \right ] \right\rgroup \cdot \left [ \begin{matrix} 1 \\ 0 \\ 2 \end{matrix} \right ] \right| = \left|\left [ \begin{matrix} 4 \\ -7 \\ -1 \end{matrix} \right ] \cdot \left [ \begin{matrix} 1 \\ 0 \\ 2 \end{matrix} \right ] \right| = 2