Question 2.12: Find (x) , (p) , (x^2) , (p^2) and (T) , for the nth station...

Find \left\langle x\right\rangle , \left\langle p\right\rangle ,\left\langle x^2\right\rangle , \left\langle p^2\right\rangle   and \left\langle T\right\rangle , for the nth stationary state of the harmonic oscillator, using the method of Example 2.5. Check that the uncertainty principle is satisfied.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. 2.70,

x=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}_{+}+\hat{a}_{-}\right) ; \quad \hat{p}=i \sqrt{\frac{\hbar m \omega}{2}}\left(\hat{a}_{+}-\hat{a}_{-}\right)   (2.70).

x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a_{+}+a_{-}\right), \quad p=i \sqrt{\frac{\hbar m \omega}{2}}\left(a_{+}-a_{-}\right) .

so

\langle x\rangle=\sqrt{\frac{\hbar}{2 m \omega}} \int \psi_{n}^{*}\left(a_{+}+a_{-}\right) \psi_{n} d x .

But (Eq. 2.67)

\hat{a}_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}, \quad \hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1}       (2.67).

a_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}, \quad a_{-} \psi_{n}=\sqrt{n} \psi_{n-1} .

So

\langle x\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left[\sqrt{n+1} \int \psi_{n}^{*} \psi_{n+1} d x+\sqrt{n} \int \psi_{n}^{*} \psi_{n-1} d x\right]= 0 (by orthogonality).

  \langle p\rangle=m \frac{d\langle x\rangle}{d t}= 0 .

x^{2}=\frac{\hbar}{2 m \omega}\left(a_{+}+a_{-}\right)^{2}=\frac{\hbar}{2 m \omega}\left(a_{+}^{2}+a_{+} a_{-}+a_{-} a_{+}+a_{-}^{2}\right) .

\left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega} \int \psi_{n}^{*}\left(a_{+}^{2}+a_{+} a_{-}+a_{-} a_{+}+a_{-}^{2}\right) \psi_{n} .  But

\begin{cases}a_{+}^{2} \psi_{n}=a_{+}\left(\sqrt{n+1} \psi_{n+1}\right)=\sqrt{n+1} \sqrt{n+2} \psi_{n+2} & =\sqrt{(n+1)(n+2)} \psi_{n+2} . \\ a_{+} a_{-} \psi_{n}=a_{+}\left(\sqrt{n} \psi_{n-1}\right) & =\sqrt{n} \sqrt{n} \psi_{n} & =n \psi_{n} .\\ a_{-} a_{+} \psi_{n}=a_{-}\left(\sqrt{n+1} \psi_{n+1}\right)=\sqrt{n+1} \sqrt{n+1} \psi_{n} &= (n+1) ψ_n . \\ a_{-}^{2} \psi_{n}=a_{-}\left(\sqrt{n} \psi_{n-1}\right) &=\sqrt{n} \sqrt{n-1} \psi_{n-2} &=\sqrt{(n-1) n} \psi_{n-2} .\end{cases} .

\left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}\left[0+n \int\left|\psi_{n}\right|^{2} d x+(n+1) \int\left|\psi_{n}\right|^{2} d x+0\right]=\frac{\hbar}{2 m \omega}(2 n+1)= \left(n+\frac{1}{2}\right) \frac{\hbar}{m \omega} .

p^{2}=-\frac{\hbar m \omega}{2}\left(a_{+}-a_{-}\right)^{2}=-\frac{\hbar m \omega}{2}\left(a_{+}^{2}-a_{+} a_{-}-a_{-} a_{+}+a_{-}^{2}\right) \Rightarrow

\left\langle p^{2}\right\rangle=-\frac{\hbar m \omega}{2}[0-n-(n+1)+0]=\frac{\hbar m \omega}{2}(2 n+1)=  \left(n+\frac{1}{2}\right) m \hbar \omega .

\langle T\rangle=\left\langle p^{2} / 2 m\right\rangle= \frac{1}{2}\left(n+\frac{1}{2}\right) \hbar \omega .

\sigma_{x}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{n+\frac{1}{2}} \sqrt{\frac{\hbar}{m \omega}} ;    \sigma_{p}=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\sqrt{n+\frac{1}{2}} \sqrt{m \hbar \omega} ;      \sigma_{x} \sigma_{p}=\left(n+\frac{1}{2}\right) \hbar \geq \frac{\hbar}{2} .

Related Answered Questions