(a) R=50 \Omega, L=4 mH \text {, and } C=0.15 \mu F , so
\omega_{ n }=\frac{1}{\sqrt{L C}}=\frac{10^{5}}{\sqrt{4 \times 1.5}}=40,825 rad / s
The series resonant frequency is
f_{ n }=\frac{\omega_{ n }}{2 \pi}=\frac{40,825}{2 \pi}=6497.5 Hz
Since \alpha=R /(2 L)=50 /\left(2 \times 4 \times 10^{-3}\right)=6250 , the damping ratio is
\delta=\frac{\alpha}{\omega_{ n }}=\frac{6250}{40,825}=0.1531
From Eq. (B.55),
\frac{I^{2} X_{ L }}{I^{2} R}=\frac{X_{ L }}{R}=\frac{2 \pi f_{ n } L}{R} (for an inductive reactance) (B.55)
Q_{ s }=\omega_{ n } \frac{L}{R}=40,825 \times 4 \times \frac{10^{-3}}{50}=3.266
For the lower cutoff frequency, Eqs. (B.85) and (B.86) give
u_{1}=-\delta+\sqrt{1+\delta^{2}} (B.85)
\omega_{1}=u_{1} \omega_{n}=\omega_{ n }\left(-\delta+\sqrt{1+\delta^{2}}\right) (B.86)
\begin{aligned}&u_{1}=-\delta+\sqrt{1+\delta^{2}}=-0.1531+\sqrt{1+0.1531^{2}}=0.85855 \\&\omega_{1}=u_{1} \omega_{ n }=0.85855 \times 40,825=35,050.4 rad / s\end{aligned}
Thus, f_{1}=35,050.4 / 2 \pi=5578 Hz For the upper cutoff frequency, Eqs. (B.83) and (B.84) give
u_{2}=\delta+\sqrt{1+\delta^{2}} (B.83)
\omega_{2}=u_{2} \omega_{ n }=\omega_{ n }\left(\delta+\sqrt{1+\delta^{2}}\right) (B.84)
\begin{aligned}&u_{2}=\delta+\sqrt{1+\delta^{2}}=0.1531+\sqrt{1+0.1531^{2}}=1.16475 \\&\omega_{2}=u_{2} \omega_{ n }=1.16475 \times 40,825=47,551 rad / s\end{aligned}
Thus, f_{2}=47,551 / 2 \pi=7568 Hz From Eq. (B.89), the bandwidth is
BW _{ s }=\frac{1}{2 \pi} \frac{R}{L}=\frac{1}{2 \pi} \frac{2 \pi f_{ n }}{Q_{ s }}=\frac{f_{ n }}{Q_{ s }} (B.89)
BW _{ s }=f_{2}-f_{1}=\frac{f_{ n }}{Q_{ s }}=\frac{6497.5}{3.266}=1989.4 Hz
(b) The series RLC circuit for PSpice simulation is shown in Fig. B.42. The list of the circuit file is as follows.
Example B.16 Frequency Response of Series RLC Circuit
.PARAM RVAL = 50
.STEP PARAM RVAL LIST 50 100 200
\begin{aligned}& Vm \quad 1 \quad 0 \quad AC \quad 1 V \quad ; AC \text { input of } 1 V \text { peak } \\& L \quad 1 \quad 2 \quad 4 MH \\& C \quad 2 \quad 3 \quad 0.15 UF \\& R \quad 3 \quad 0 \quad\{ RVAL \} \\&. AC DEC 100 \quad 100 HZ 1 MEGHz \quad ; \text { AC analysis from } f =100 Hz \text { to } 1 MHz \quad ; \\ & \qquad \qquad \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \text { with a decade change and 100 points per decade; }\\&. \text { PROBE } \\&\text {.END }\end{aligned}
The PSpice plots of the magnitude and phase angle (using EXB-16.SCH) are shown in Fig. B.43. The plot for R=50 \Omega \text { gives } f_{1}=5578 Hz , f_{2}=7568 Hz , f_{ n }=6457 Hz \text {, and } BW _{ s }=f_{2}-f_{1}=1990 Hz .