Question B.16: Finding the frequency response of a series RLC circuit The s...

Finding the frequency response of a series RLC circuit The series RLC circuit in Fig. B.40 has R = 50 Ω, L = 4 mH, and C = 0.15 µF.

(a) Determine the series resonant frequency f_{ n } , the damping ratio δ, the quality factor Q_{ s } , the cutoff frequencies, and the bandwidth BW_s.

(b) Use PSpice/SPICE to plot the magnitude and phase angle of the output voltage for R = 50 Ω, 100 Ω, and 200 Ω. The frequency f varies from 100 Hz to 1 MHz. Assume V_{ m }=1 V \text { peak } AC .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) R=50 \Omega, L=4 mH \text {, and } C=0.15 \mu F , so

\omega_{ n }=\frac{1}{\sqrt{L C}}=\frac{10^{5}}{\sqrt{4 \times 1.5}}=40,825 rad / s

The series resonant frequency is

f_{ n }=\frac{\omega_{ n }}{2 \pi}=\frac{40,825}{2 \pi}=6497.5 Hz

Since \alpha=R /(2 L)=50 /\left(2 \times 4 \times 10^{-3}\right)=6250 , the damping ratio is

\delta=\frac{\alpha}{\omega_{ n }}=\frac{6250}{40,825}=0.1531

From Eq. (B.55),

\frac{I^{2} X_{ L }}{I^{2} R}=\frac{X_{ L }}{R}=\frac{2 \pi f_{ n } L}{R}                           (for an inductive reactance)                                  (B.55)

 

Q_{ s }=\omega_{ n } \frac{L}{R}=40,825 \times 4 \times \frac{10^{-3}}{50}=3.266

For the lower cutoff frequency, Eqs. (B.85) and (B.86) give

u_{1}=-\delta+\sqrt{1+\delta^{2}}                                       (B.85)

 

\omega_{1}=u_{1} \omega_{n}=\omega_{ n }\left(-\delta+\sqrt{1+\delta^{2}}\right)                                   (B.86)

 

\begin{aligned}&u_{1}=-\delta+\sqrt{1+\delta^{2}}=-0.1531+\sqrt{1+0.1531^{2}}=0.85855 \\&\omega_{1}=u_{1} \omega_{ n }=0.85855 \times 40,825=35,050.4 rad / s\end{aligned}

Thus, f_{1}=35,050.4 / 2 \pi=5578 Hz For the upper cutoff frequency, Eqs. (B.83) and (B.84) give

u_{2}=\delta+\sqrt{1+\delta^{2}}                             (B.83)

 

\omega_{2}=u_{2} \omega_{ n }=\omega_{ n }\left(\delta+\sqrt{1+\delta^{2}}\right)                                      (B.84)

 

\begin{aligned}&u_{2}=\delta+\sqrt{1+\delta^{2}}=0.1531+\sqrt{1+0.1531^{2}}=1.16475 \\&\omega_{2}=u_{2} \omega_{ n }=1.16475 \times 40,825=47,551 rad / s\end{aligned}

Thus, f_{2}=47,551 / 2 \pi=7568 Hz From Eq. (B.89), the bandwidth is

BW _{ s }=\frac{1}{2 \pi} \frac{R}{L}=\frac{1}{2 \pi} \frac{2 \pi f_{ n }}{Q_{ s }}=\frac{f_{ n }}{Q_{ s }}                                                (B.89)

 

BW _{ s }=f_{2}-f_{1}=\frac{f_{ n }}{Q_{ s }}=\frac{6497.5}{3.266}=1989.4 Hz

(b) The series RLC circuit for PSpice simulation is shown in Fig. B.42. The list of the circuit file is as follows.

Example B.16 Frequency Response of Series RLC Circuit
.PARAM RVAL = 50
.STEP  PARAM  RVAL  LIST  50  100  200

\begin{aligned}& Vm \quad 1 \quad 0 \quad AC \quad 1 V \quad ; AC \text { input of } 1 V \text { peak } \\& L \quad 1 \quad 2 \quad 4 MH \\& C \quad 2 \quad 3 \quad 0.15 UF \\& R \quad 3 \quad 0 \quad\{ RVAL \} \\&. AC  DEC  100 \quad  100 HZ  1 MEGHz \quad ; \text { AC analysis from } f =100 Hz \text { to } 1 MHz \quad ; \\ & \qquad \qquad \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \text { with a decade change and 100 points per decade; }\\&. \text { PROBE } \\&\text {.END }\end{aligned}

The PSpice plots of the magnitude and phase angle (using EXB-16.SCH) are shown in Fig. B.43. The plot for R=50 \Omega \text { gives } f_{1}=5578 Hz , f_{2}=7568 Hz , f_{ n }=6457 Hz \text {, and } BW _{ s }=f_{2}-f_{1}=1990 Hz .

image_2021-11-18_205924
image_2021-11-18_210257

Related Answered Questions