Question B.13: Finding the parallel resonant frequency The parameters of th...

Finding the parallel resonant frequency The parameters of the parallel resonant RLC circuit in Fig. B.32(a) are R_{ C1 }=47 \Omega, L=5 mH , C=50 pF , R_{ S }=20 k \Omega \text {, and the current source } I_{ s }=6 mA . Calculate (a) the parallel resonant frequency f_{ p } \text {, (b) the voltage } V_{ p } across the resonant circuit at resonance, (c) the quality factor Q_{ C1 } of the coil, and (d) the quality factor Q_{ p } of the resonant circuit.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
R_{ C1 }=47 \Omega, L=5 mH , C=50 pF , R_{ S }=20 k \Omega, \text { and } I_{ s }=6 mA.

(a) From Eq. (B.53),

f_{ n }=\frac{1}{2 \pi \sqrt{L C}}                                  (B.53)

f_{ n }=\frac{1}{2 \pi \times \sqrt{5 \times 10^{-3} \times 50 \times 10^{-12}}}=318.3 kHz

From Eq. (B.63),

f_p=f_{ n }\left[1-\frac{C R_{ C 1}^{2}}{L}\right]^{1 / 2}                               (B.63)

f_{ p }=318.3 \times 10^{3} \times\left[1-50 \times 10^{-12} \times \frac{47^{2}}{5 \times 10^{-3}}\right]^{1 / 2} \approx 318.3 kHz

(b) We know that

X_{ L }=2 \pi f_{ p } L=2 \pi \times 318.3 \times 10^{3} \times 5 \times 10^{-3}=9999.7 \Omega

From Eq. (B.59), the effective resistance R_{ p } of the parallel circuit is

R_{ p }=\frac{R_{ C 1}^{2}+X_{ L }^{2}}{R_{ C 1}}                                       (B.59)

 

R_{ p }=\frac{47^{2}+9999.7^{2}}{47}=2127.6 k \Omega

Using the current divider rule, the rms current I_{ p } through the parallel circuit is

\begin{aligned}&I_{ p }=\frac{R_{ S }}{R_{ S }+R_{ p }} I_{ s }=\frac{20 k \Omega \times 6 mA }{20 k \Omega+2127.6 k \Omega}=55.876 \mu A \\&V_{ p }=I_{ p } R_{ p }=55.876 \mu A \times 2127.6 k \Omega=118.88 V\end{aligned}

(c) We have

Q_{ C 1}=\frac{X_{ L }}{R_{ C 1}}=\frac{9999.7}{47}=212.8

(d) From Eq. (B.60), the effective inductive reactance X_{ p } of the parallel circuit is

X_{ p }=\frac{R_{ C 1}^{2}+X_{ L }^{2}}{X_{ L }}                                    (B.60)

 

\begin{aligned}&X_{ p }=\frac{47^{2}+9999.7^{2}}{9999.7}=9999.92 \Omega \\&R_{ S } \| R_{ p }=\frac{20 \times 2127.6}{20+2127.6}=19.81 k \Omega\end{aligned}

 

From Eq. (B.64), Q_{ p }=19,810 / 9999.92=1.98.

 

Q_{ p }=\frac{V_{ p }^{2} / X_{ p }}{V_{ p }^{2} /\left(R_{S} \| R_{ p }\right)}=\frac{R_{ S } \| R_{ p }}{X_{ p }}                                      (B.64)

Related Answered Questions