\text { For a cantilever beam loaded in bending, prove that } \beta=1 / 2 \text { for the } E^{\beta} / \rho \text { guidelines in Fig. 2-16. }
Eq. (2-26), p. 65, applies to a circular cross section. However, for any cross section shape it can be shown that I=C A^{2}, where C is a constant. For example, consider a rectangular section of height h and width b, where for a given scaled shape, h=c b, where c is a constant. The moment of inertia is I=b h^{3} / 12, and the area is A=b h. Then I=h\left(b h^{2}\right) / 12 =c b\left(b h^{2}\right) / 12=(c / 12)(b h)^{2}=C A^{2}, where C=c / 12
Thus, Eq. (2-27) becomes
A=\left(\frac{k l^{3}}{3 C E}\right)^{1 / 2}and Eq. (2-29) becomes
m=A l \rho=\left(\frac{k}{3 C}\right)^{1 / 2} l^{5 / 2}\left(\frac{\rho}{E^{1 / 2}}\right)So, minimize f_{3}(M)=\frac{\rho}{E^{1 / 2}}, or maximize M=\frac{E^{1 / 2}}{\rho} . Thus, \beta=1 / 2 . .
2-26
I=\frac{\pi D^{4}}{64}=\frac{A^{2}}{4 \pi}2-27
A=\left(\frac{4 \pi k l^{3}}{3 E}\right)^{1 / 2}2-29
m=2 \sqrt{\frac{\pi}{3}}\left(k^{1 / 2}\right)\left(l^{5 / 2}\right)\left(\frac{\rho}{E^{1 / 2}}\right)