Question 12.46: For balancing an alternator motor by the field-balancing tec...

For balancing an alternator motor by the field-balancing technique, the experimental results obtained are listed in Table 12.44. Determine the correct balance masses that should be placed in two planes for complete dynamic balancing of the motor

Table 12.44
Plane B Plane A Trial mass
(kg)
Trial
number
Phase angle
deg
Amplitude
cm
Phase angle
deg
Amplitude
cm
65 4.2 \times 10^{-4} 15 3.5 \times 10^{-4} 0 1
81 3.1 \times 10^{-4} 75 4.5 \times 10^{-4} 2 at plane A 2
155 2.2 \times 10^{-4} 35 4.0 \times 10^{-4} 2 at plane B 3
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\text { Fig.12.63(a) shows the vectors } A_{1}, A_{2} \text { and } A_{3} \text { to some scale and Fig.12.63(b) shows } B_{1}, B_{2} \text { and } B_{3} \text { drawn to the same scale.}

From Figs. 12.63(a) and (b), we get

A_{2}-A_{1}=4.1 \times 10^{-4} e^{-i\left(123^{\circ}\right)}, A_{3}-A_{1}=1.4 \times 10^{-4} e^{-} .

B_{2}-B_{1}=1.5 \times 10^{-4} e^{-i\left(211^{\circ}\right)}, B_{3}-B_{1}=4.75 \times 10^{-4} e^{-i\left(218^{\circ}\right)} .

From the given data

A_{1}=3.5 \times 10^{-4} e^{-i\left(15^{\circ}\right)}, B_{1}=4.2 \times 10^{-4} e^{-i\left(65^{\circ}\right)} .

a=\frac{4.2 e^{-i\left(65^{\circ}\right)} \times 1.4 e^{-i\left(94.5^{\circ}\right)}-3.5 e^{-i\left(15^{\circ}\right)} \times 4.75 e^{-i\left(218^{\circ}\right)}}{4.1 e^{-i\left(123^{\circ}\right)} \times 4.75 e^{-i\left(218^{\circ}\right)}-1.4 e^{-i\left(94.5^{\circ}\right)} \times 1.5 e^{-i\left(211^{\circ}\right)}} .

=\frac{5.88 e^{-i\left(159.5^{\circ}\right)}-16.625 e^{-i\left(233^{\circ}\right)}}{19.475 e^{-i\left(341^{\circ}\right)}-2.1 e^{-i\left(305.5^{\circ}\right)}} .

\beta=\frac{3.5 e^{-i\left(15^{\circ}\right)} \times 1.5 e^{-i\left(211^{\circ}\right)}-4.2 e^{-i\left(65^{\circ}\right)} \times 4.1 e^{-i\left(123^{\circ}\right)}}{19.475 e^{-i\left(341^{\circ}\right)} \times 2.1 e^{-i\left(305.5^{\circ}\right)}} .

=\frac{5.25 e^{-i\left(226^{\circ}\right)}-17.22 e^{-i\left(188^{\circ}\right)}}{19.475 e^{-i\left(341^{\circ}\right)}-2.1 e^{-i\left(138^{\circ}\right)}} .

\text { The valves of } \alpha \text { and } \beta \text { are obtained graphically as explained in Fig.12.63(c). }

\alpha=\frac{1.59 e^{-i\left(74^{\circ}\right)}}{1.77 e^{-i\left(345^{\circ}\right)}}=0.902 e^{-i\left(-271^{\circ}\right)} .

\beta=\frac{1.36 e^{-i\left(350^{\circ}\right)}}{1.77 e^{-i\left(345^{\circ}\right)}}=0.768 e^{-i\left(5^{\circ}\right)} .

\text { Balance mass at plane } A=0.902 \times 2=1.804 kg \text { at } 271^{\circ} cw \text { or } 89^{\circ} ccw .

\text { Balance mass at plane } B=0.768 \times 2=1.536 kg \text { at } 5^{\circ} cc w \text { from the position of trial mess }.

12.63
12.63c

Related Answered Questions