Question 4.6: For steady incompressible laminar flow through a long tube, ...

For steady incompressible laminar flow through a long tube, the velocity distribution is given by

v_z=U\left(1-\frac{r^2}{R^2}\right)           v_r=v_{\theta}=0

where U is the maximum, or centerline, velocity and R is the tube radius. If the wall temperature is constant at T_w and the temperature T = T(r) only, find T(r) for this flow.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

With T = T(r), Eq. (4.75) reduces for steady flow to
\rho c_p \frac{dT}{dt}=k \nabla^2 T +\Phi                                  (4.75)
\rho c_p v_r \frac{dT}{dr}=\frac{k}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right)+\mu \left(\frac{dv_z}{dr}\right)^2                          (1)
But since v_r = 0 for this flow, the convective term on the left vanishes. Introduce v_z into Eq. (1) to obtain
\frac{k}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right)=-\mu \left(\frac{dv_z}{dr}\right)^2=-\frac{4U^2 \mu r^2}{R^4}                          (2)
Multiply through by r/k and integrate once:
r\frac{dT}{dr}=-\frac{\mu U^2 r^4}{kR^4}+C_1                                         (3)
Divide through by r and integrate once again:
T=-\frac{\mu U^2 r^4}{4kR^4}+C_1 \ln r+C_2                                            (4)
Now we are in position to apply our boundary conditions to evaluate C_1  and  C_2.
First, since the logarithm of zero is -\infty, the temperature at r = 0 will be infinite unless
C_1=0                                        (5)
Thus we eliminate the possibility of a logarithmic singularity. The same thing will happen if we apply the symmetry condition dT/dr = 0 at r = 0 to Eq. (3). The constant C_2 is then found by the wall-temperature condition at r = R:
T=T_w=-\frac{\mu U^2}{4k}+C_2
or                    C_2=T_w+\frac{\mu U^2}{4k}                                       (6)
The correct solution is thus
T(r)=T_w+\frac{\mu U^2}{4k}\left(1-\frac{r^4}{R^4}\right)                                                       Ans. (7)
which is a fourth-order parabolic distribution with a maximum value T_0=T_w+\mu U^2/(4k) at the centerline.

Related Answered Questions