Question 11.25: For the examples in Problem 11.24 (c) and (d), calculate cm ...

For the examples in Problem 11.24 (c) and (d), calculate c_{m}(t) , to first order. Check the normalization condition:

\sum_{m}\left|c_{m}(t)\right|^{2}=1 ,                      (11.122).

and comment on any discrepancy. Suppose you wanted to calculate the probability of remaining in the original state \psi_{N} ; would you do better to use \left|c_{N}(t)\right|^{2}, \text { or } 1-\sum_{m \neq N}\left|c_{m}(t)\right|^{2} ?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For example (c):

 

c_{N}(t)=1-\frac{i}{\hbar} H_{N N}^{\prime} t ; \quad c_{m}(t)=-2 i \frac{H_{m N}^{\prime}}{\left(E_{m}-E_{N}\right)} e^{i\left(E_{m}-E_{N}\right) t / 2 \hbar} \sin \left(\frac{E_{m}-E_{N}}{2 \hbar} t\right)(m \neq N) .

 

\left|c_{N}\right|^{2}=1+\frac{1}{\hbar^{2}}\left|H_{N N}^{\prime}\right|^{2} t^{2}, \quad\left|c_{m}\right|^{2}=4 \frac{\left|H_{m N}^{\prime}\right|^{2}}{\left(E_{m}-E_{N}\right)^{2}} \sin ^{2}\left(\frac{E_{m}-E_{N}}{2 \hbar} t\right) ,  so

 

\sum_{m}\left|c_{m}\right|^{2}=1+\frac{t^{2}}{\hbar^{2}}\left|H_{N N}^{\prime}\right|^{2}+4 \sum_{m \neq N} \frac{\left|H_{m N}^{\prime}\right|^{2}}{\left(E_{m}-E_{N}\right)^{2}} \sin ^{2}\left(\frac{E_{m}-E_{N}}{2 \hbar} t\right) .

 

This is plainly greater than 1! But remember: The c’s are accurate only to first order in H^{\prime} ; to this order the \left|H^{\prime}\right|^{2} terms do not belong. Only if terms of first order appeared in the sum would there be a genuine problem with normalization.

For example (d):

 

c_{N}=1-\frac{i}{\hbar} V_{N N} \int_{0}^{t} \cos \left(\omega t^{\prime}\right) d t^{\prime}=1-\left.\frac{i}{\hbar} V_{N N} \frac{\sin \left(\omega t^{\prime}\right)}{\omega}\right|_{0} ^{t} \Longrightarrow c_{N}(t)=1-\frac{i}{\hbar \omega} V_{N N} \sin (\omega t) .

 

c_{m}(t)=-\frac{V_{m N}}{2}\left[\frac{e^{i\left(E_{m}-E_{N}+\hbar \omega\right) t / \hbar}-1}{\left(E_{m}-E_{N}+\hbar \omega\right)}+\frac{e^{i\left(E_{m}-E_{N}-\hbar \omega\right) t / \hbar}-1}{\left(E_{m}-E_{N}-\hbar \omega\right)}\right](m \neq N) .   So

 

\left|c_{N}\right|^{2}=1+\frac{\left|V_{N N}\right|^{2}}{(\hbar \omega)^{2}} \sin ^{2}(\omega t) ;

 

and in the rotating wave approximation

 

\left|c_{m}\right|^{2}=\frac{\left|V_{m N}\right|^{2}}{\left(E_{m}-E_{N} \pm \hbar \omega\right)^{2}} \sin ^{2}\left(\frac{E_{m}-E_{N} \pm \hbar \omega}{2 \hbar} t\right) \quad(m \neq N) .

 

Again, ostensibly \sum\left|c_{m}\right|^{2}>1 , but the \extra” terms are of second order in H^{\prime} , and hence do not belong (to first order).

You would do

better to use

 

  1-\sum_{m \neq N}\left|c_{m}\right|^{2}

 

. Schematically:

 

c_{m}=a_{1} H+a_{2} H^{2}+\cdots, \quad \text { so } \quad\left|c_{m}\right|^{2}=a_{1}^{2} H^{2}+2 a_{1} a_{2} H^{3}+\cdots , whereas c_{N}=1+b_{1} H+b_{2} H^{2}+\cdots, \quad \text { so } \quad\left|c_{N}\right|^{2}=1+2 b_{1} H+\left(2 b_{2}+b_{1}^{2}\right) H^{2}+\cdots

 

. Thus knowing

 

c_{m}

 

to first order (i.e., knowing a_{1}

 

) gets you

 

\left|c_{m}\right|^{2}  to second order, but knowing  c_{N}  to first order

 

(i.e..    b_{1}  ) does not get vou

 

\left|c_{N}\right|^{2}  o second order (vou’d also need   b_{2} . It is preciselv this b_{2}  term that would } [/latex] cancel the “extra” (second-order) terms in the calculations of  \sum\left|c_{m}\right|^{2} \text { above } .

Related Answered Questions