Question 16.11: For the four-bar linkage, the following data are given:θ2=60...

For the four-bar linkage, the following data are given:
θ_2=60°, θ_4=90°
ω_2=3 rad/s, ω_4=2 rad/s
α_2=1 rad/s², α_4=0
Determine the link-length ratios.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The Freudenstein’s equation for the four-bar mechanism shown in Fig.16.25 is:

k_{1} \cos \theta_{4}+k_{2} \cos \theta_{2}+k_{3}=\cos \left(\theta_{2}-\theta_{4}\right)                     (1).

where            k_{1}=\frac{d}{a}, k_{2}=\frac{d}{c}, k_{3}=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c}

Taking the first time derivative of Eq. (1), we have

k_{1} \omega_{4} \sin \theta_{4}+k_{2} \omega_{2} \sin \theta_{2}=\left(\omega_{2}-\omega_{4}\right) \sin \left(\theta_{2}-\theta_{4}\right) .

Taking the second time derivative of Eq. (2)

k_{1}\left(\omega_{4}^{2} \cos \theta_{4}+\alpha_{4} \sin \theta_{4}\right)+k_{2}\left(\omega_{2}^{2} \cos \theta_{2}+\alpha_{2} \sin \theta_{2}\right) .

=\left(\alpha_{2}-\omega_{4}\right) \sin \left(\theta_{2}-\theta_{4}\right)+\left(\omega_{2}-\omega_{4}\right)^{2} \cos \left(\theta_{2}-\theta_{4}\right)              (3).

Substituting the values of various terms in Eqs. (1) and (3), we get

k_{1} \cos 90^{\circ}+k_{2} \cos 60^{\circ}+k_{3}=\cos \left(60^{\circ}-90^{\circ}\right) .

or            0.5 k_{2}+k_{3}=\frac{\sqrt{3}}{2} .

or              k_{2}+2 k_{3}=\sqrt{3}                (4).

k_{1} \times 2 \times \sin 90^{\circ}+k_{2} \times 3 \sin 60^{\circ}=(3-2) \sin \left(60^{\circ}-90^{\circ}\right) .

or          2 k_{1}+\frac{3 \sqrt{3}}{2} k_{2}=-\frac{1}{2}.

or          4 k_{1}+3 \sqrt{3} k_{2}=-1               (5).

k_{1}\left(4 \cos 90^{\circ}+0 \times \sin 90^{\circ}\right)+k_{2}\left(9 \times \cos 60^{\circ}-1 \times \sin 60^{\circ}\right)

=(-1-0) \times \sin \left(60^{\circ}-90^{\circ}\right)+(3-2)^{2} \times \cos \left(60^{\circ}-90^{\circ}\right) .

or      k_{2}\left[9 \times \frac{1}{2}-\frac{\sqrt{3}}{2}\right]=(-1) \times\left(-\frac{1}{2}\right)+1 \times \frac{\sqrt{3}}{2} .

k_{2}(4.5-0.866)=\frac{1}{2}+\frac{\sqrt{3}}{2} .

k_{2}=0.376                 (6).

Solving Eqns. (4) to (6), we get

k_{1}=-0.738, k_{3}=0.678 .

k_{2}=\frac{d}{a}, a=\frac{-1}{0.738}=-1.355.

k_{2}=-\frac{d}{c}, c=\frac{-1}{0.376}=-2.659 .

k_{3}=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c} .

0.678 \times 2 \times(-1.355) \times(-2.659)=(-1.355)^{2}-b^{2}+(-2.659)^{2}+1 .

b^{2}=5.0207, b=2.24 .

Thus          d=1.0, a=-1.355, b=2.24, c=-2.659 .

16.25

Related Answered Questions

Consider a four-bar mechanism as shown in Fig.16.1...