For the system shown in Fig.17.54, determine the natural frequency of damped vibrations and critical damping coefficient
For the system shown in Fig.17.54, determine the natural frequency of damped vibrations and critical damping coefficient
The equation of motion is:
m(a+b)^{2} \ddot{\theta}+c a^{2} \dot{\theta}+k a^{2} \theta=0 .
Comparing with the standard equation of motion, we have
I=m(a+b)^{2} .
c_{t e}=c a^{2} .
q_{e}=k a^{2} .
Undamped natural frequency, \omega_{n}=\sqrt{\frac{q_{e}}{I}} .
=\sqrt{\frac{k a^{2}}{m(a+b)^{2}}} .
=\frac{a}{(a+b)} \sqrt{\frac{k}{m}} rad / s .
\text { Critical damping coefficient, } c_{t c}=2 I \omega_{n} .
=2 m(a+b)^{2}\left[\left(\frac{a}{a+b}\right) \sqrt{\frac{k}{m}}\right] .
=2 a(a+b) \sqrt{k m} .
Damping factor, \zeta=\frac{c_{t e}}{c_{t c}} .
=\frac{c a^{2}}{2 a(a+b) \sqrt{k m}} .
=\frac{c a}{2(a+b) \sqrt{k m}} .
\text { Damped natural frequency, } \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}} .
=\left(\frac{a}{a+b}\right) \sqrt{\frac{k}{m}} \sqrt{1-\frac{c^{2} a^{2}}{4(a+b)^{2} k m}} .
=\frac{a}{2(a+b)^{2} m} \sqrt{4(a+b)^{2} k m-c^{2} a^{2}} .