Question 3.21: Gasoline at 20°C is pumped through a smooth 12-cm-diameter p...

Gasoline at 20°C is pumped through a smooth 12-cm-diameter pipe 10 km long, at a flow rate of 75 m^3/h (330 gal/min). The inlet is fed by a pump at an absolute pressure of 24 atm. The exit is at standard atmospheric pressure and is 150 m higher. Estimate the frictional head loss h_f, and compare it to the velocity head of the flow V^2/(2g). (These numbers are quite realistic for liquid flow through long pipelines.)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

• Property values: From Table A.3 for gasoline at 20°C, ρ = 680 kg/m^3, or \gamma = (680)(9.81) = 6670 N/m^3.

Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F)
Liquid ρ, kg/m^3 µ, kg/(m·s) Y, N/m^* p_{\nu},  N/m^2 Bulk modulus K,
N/m^2
Viscosity
parameter C^{\dagger}
Ammonia 608 2.20 E-4 2.13 E-2 9.10 E+5 1.82 E+9 1.05
Benzene 881 6.51 E-4 2.88 E-2 1.01 E+4 1.47 E+9 4.34
Carbon tetrachloride 1590 9.67 E-4 2.70 E-2 1.20 E+4 1.32 E+9 4.45
Ethanol 789 1.20 E-3 2.28 E-2 5.73 E+3 1.09 E+9 5.72
Ethylene glycol 1117 2.14 E-2 4.84 E-2 1.23 E+1 3.05 E+9 11.7
Freon 12 1327 2.62 E-4 7.95 E+8 1.76
Gasoline 680 2.92 E-4 2.16 E-2 5.51 E+4 1.3 E+9 3.68
Glycerin 1260 1.49 6.33 E-2 1.43 E-2 4.35 E+9 28.0
Kerosene 804 1.92 E-3 2.8 E-2 3.11 E+3 1.41 E+9 5.56
Mercury 13,550 1.56 E-3 4.84 E-1 1.13 E-3 2.85 E+10 1.07
Methanol 791 5.98 E-4 2.25 E-2 1.34 E+4 1.03 E+9 4.63
SAE 10W oil 870 1.04 E- 1^{\ddagger} 3.6 E-2 1.31 E+9 15.7
SAE 10W30 oil 876 1.7 E-1^{\ddagger} 14.0
SAE 30W oil 891 2.9 E-1^{\ddagger} 3.5 E-2 1.38 E+9 18.3
SAE 50W oil 902 8.6 E-1^{\ddagger} 20.2
Water 998 1.00 E-3 7.28 E-2 2.34 E+3 2.19 E+9 Table A.1
Seawater (30%) 1025 1.07 E-3 7.28 E-2 2.34 E+3 2.33 E+9 7.28

^*In contact with air.
^{\dagger}The viscosity–temperature variation of these liquids may be fitted to the empirical expression

\frac{\mu}{\mu_{20^{\circ}C}} \approx \exp \left[C\left(\frac{293  K}{T  K} – 1\right)\right]

with accuracy of ±6 percent in the range 0 ≤ T ≤ 100°C.

^{\ddagger}Representative values. The SAE oil classifications allow a viscosity variation of up to ±50 percent, especially at lower temperatures.

Table A.1 Viscosity and Density of Water at 1 atm
T,°C \rho,kg/m^{3} \mu ,N\cdot s/m^{2} \nu  ,m^{2}/s T,°F \rho   ,slug/ft^{3} \mu ,Ib\cdot s/ft^{2} \nu ,ft^{2}/s
0 1000 1.788 E-3 1.788 E-6 32 1.94 3.73 E-5 1.925 E-5
10 1000 1.307 E-3 1.307 E-6 50 1.94 2.73 E-5 1.407 E-5
20 998 1.003 E-3 1.005 E-6 68 1.937 2.09 E-5 1.082 E-5
30 996 0.799 E-3 0.802 E-6 86 1.932 1.67 E-5 0.864 E-5
40 992 0.657 E-3 0.662 E-6 104 1.925 1.37 E-5 0.713 E-5
50 988 0.548 E-3 0.555 E-6 122 1.917 1.14 E-5 0.597 E-5
60 983 0.467 E-3 0.475 E-6 140 1.908 0.975 E-5 0.511 E-5
70 978 0.405 E-3 0.414 E-6 158 1.897 0.846 E-5 0.446 E-5
80 972 0.355 E-3 0.365 E-6 176 1.886 0.741 E-5 0.393 E-5
90 965 0.316 E-3 0.327 E-6 194 1.873 0.660 E-5 0.352 E-5
100 958 0.283 E-3 0.295 E-6 212 1.859 0.591 E-5 0.318 E-5
Suggested curve fits for water in the range 0\leq T\leq 100°C:
\rho (kg/m^{3})\approx 1000-0.0178\mid T°C-4°C\mid ^{1.7}\pm 0.2\%
\ln \frac{\mu }{\mu _{0}} \approx -1.704-5.306z+7.003z^{2}
z=\frac{273K}{TK}     \mu _{0}=1.788E-3kg/(m\cdot s)

• Assumptions: Steady flow. No shaft work, thus h_p = h_t = 0. If z_1 = 0, then z_2 = 150 m.

• Approach: Find the velocity and the velocity head. These are needed for comparison. Then evaluate the friction loss from Eq. (3.73).

\left(\frac{p}{\gamma} + \frac{V^2}{2g} + z\right)_{in} = \left(\frac{p}{\gamma} + \frac{V^2}{2g} + z\right)_{out} + h_{friction} – h_{pump} + h_{turbine}                     (3.73)

• Solution steps: Since the pipe diameter is constant, the average velocity is the same everywhere:

V_{in} = V_{out} = \frac{Q}{A} = \frac{Q}{(\pi/4)D^2} = \frac{(75  m^3/h)/(3600  s/h)}{(\pi/4)(0.12  m)^2} \approx 1.84  \frac{m}{s}

Velocity head = \frac{V^2}{2g} = \frac{(1.84  m/s)^2}{2(9.81  m/s^2)} \approx 0.173  m

Substitute into Eq. (3.73) and solve for the friction head loss. Use pascals for the pressures and note that the velocity heads cancel because of the constant-area pipe.

\frac{p_{in}}{\gamma} + \frac{V^2_{in}}{2g} + z_{in} = \frac{p_{out}}{\gamma} + \frac{V^2_{out}}{2g} + z_{out} + h_f

 

\frac{(24)(101,350  N/m^2)}{6670  N/m^3} + 0.173  m + 0  m = \frac{101,350  N/m^2}{6670  N/m^3} + 0.173  m + 150  m + h_f

or            h_f = 364.7 – 15.2 – 150 \approx 199  m

The friction head is larger than the elevation change Δz, and the pump must drive the flow against both changes, hence the high inlet pressure. The ratio of friction to velocity head is

\frac{h_f}{V^2/(2g)} \approx \frac{199  m}{0.173  m} \approx 1150

• Comments: This high ratio is typical of long pipelines. (Note that we did not make direct use of the 10,000-m pipe length, whose effect is hidden within h_f.) In Chap. 6 we can state this problem in a more direct fashion: Given the flow rate, fluid, and pipe size, what inlet pressure is needed? Our correlations for h_f will lead to the estimate p_{inlet} ≈ 24 atm, as stated here.

Related Answered Questions