Given a part with S_{ut} = 151 kpsi and at the critical location of the part, S_{e} = 67.5 kpsi. For the loading of Fig. 6–33, estimate the number of repetitions of the stress-time block in Fig. 6–33 that can be made before failure.
Given a part with S_{ut} = 151 kpsi and at the critical location of the part, S_{e} = 67.5 kpsi. For the loading of Fig. 6–33, estimate the number of repetitions of the stress-time block in Fig. 6–33 that can be made before failure.
From Fig. 6–18, p. 277, for S_{ut} = 151 kpsi, f = 0.795. From Eq. (6–14),
a =\frac{( f S_{ut} )^{2}}{S_{e}} (6–14)
a =\frac{( f S_{ut} )^{2}}{S_{e}} =\frac {[0.795(151)]^{2}}{67.5 }= 213.5 kpsi
From Eq. (6–15),
b = −\frac {1}{3} log \left ( \frac {f S_{ut}}{S_{e}}\right) (6–15)
b = −\frac {1}{3} log \left ( \frac {f S_{ut}}{S_{e}}\right)= −\frac {1}{3} log \left [ \frac {0.795 (151)}{67.5}\right]= −0.0833
So,
S_{f} = 213.5N^{−0.0833} N =\left ( \frac {S_{f}}{213.5}\right)^{−1/0.0833} (1), (2)
We prepare to add two columns to the previous table. Using the Gerber fatigue criterion, Eq. (6–47), p. 298, with S_{e} = S_{f} , and n = 1, we can write
Gerber \frac{nσ_{a}}{S_{e}} + \left( \frac {nσ_{m}}{S_{ut}}\right)^{2}= 1 (6–47)
S_{f}= \begin{cases} \frac {σ_{a}}{1 − (σ_{m}/S_{ut} )^{2}} & σ_{m} > 0 \\ S_{e} &σ_{m} ≤ 0 \end{cases} (3)
Cycle 1: r = σ_{a}/σ_{m} = 70/10 = 7, and the strength amplitude from Table 6–7, p. 299, is
Table 6–7 Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for Gerber and Langer Failure Criteria
Intersection Coordinates | Intersecting Equations |
S_{a} =\frac {r^{2}S^{2}_{ut}}{2S_{e}} \left [-1+\sqrt {1+\left (\frac {2S_{e}}{rS_{ut}}\right)^{2}}\right]
S_{m} =\frac {S_{a}}{r} |
\frac {S_{a}}{S_{e}} +\left (\frac {S_{m}}{S_{ut}}\right)^{2}= 1
Load line r =\frac {S_{a}}{S_{m}} |
S_{a} =\frac {r S_{y}}{1 + r}
S_{m} =\frac {S_{y}}{1 + r} |
\frac {S_{a}}{S_{y}} +\frac {S_{m}}{S_{y}} = 1
Load line r =\frac {S_{a}}{S_{m}} |
S_{m} =\frac {S^{2}_{ut}}{2S_{e}} \left [1 − \sqrt{1 + \left(\frac {2S_{e}}{S_{ut}}\right)^{2} \left(1 − \frac {S_{y}}{S_{e}}\right) }\right]
S_{a} = S_{y} − S_{m},r_{crit} = S_{a}/S_{m} |
\frac {S_{a}}{S_{e}} +\left (\frac {S_{m}}{S_{ut}}\right)^{2}= 1
\frac {S_{a}}{S_{y}} +\frac {S_{m}}{S_{y}} = 1 |
Fatigue factor of safety
n_{f} =\frac {1}{2} \left(\frac {S_{ut}}{σ_{m}}\right)^{2} \frac {σ_{a}}{S_{e}} \left [-1+\sqrt {1+\left (\frac {2σ_{m} S_{e}}{ S_{ut}σ_{a}}\right)^{2}}\right] σ_{m}>0 |
S_{a} =\frac {7^{2}151^{2}}{2 (67.5)} \left\{-1+\sqrt {1+\left [\frac {2(67.5)}{7(151)}\right]^{2}}\right\}= 67.2 kpsi
Since σ_{a} > S_{a} , that is, 70 > 67.2, life is reduced. From Eq. (3),
S_{f} =\frac {70}{1 − (10/151)^{2}} = 70.3 kpsi
and from Eq. (2)
N =\left( \frac {70.3}{213.5} \right)^{−1/0.0833}= 619(10^{3}) cycles
Cycle 2: r = 10/50 = 0.2, and the strength amplitude is
S_{a} =\frac {0.2^{2}151^{2}}{2 (67.5)} \left\{-1+\sqrt {1+\left [\frac {2(67.5)}{0.2(151)}\right]^{2}}\right\}= 24.2 kpsi
Since σ _{a} < S_{a} , that is 10 < 24.2, then S_{f} = S_{e} and indefinite life follows. Thus, N→ ∞.
Cycle 3: r = 10/−30 = −0.333, and since σ_{m} < 0, S_{f} = S_{e} , indefinite life follows and N→ ∞
N, cycles | S_{f} , kpsi | Cycle Number |
619( 10^{3}) | 70.3 | 1 |
∞ | 67.5 | 2 |
∞ | 67.5 | 3 |
From Eq. (6–58) the damage per block is
D =\sum { \frac { n_{i}}{N_{i}}} (6–58)
D =\sum { \frac { n_{i}}{N_{i}}}=N \left[ \frac {1}{619(10^{3})} +\frac {1}{∞} +\frac {1}{∞}\right]=\frac {N}{619(10^{3})}
Setting D = 1 yields N = 619(10^{3}) cycles.