Question 6.15: Given a part with Sut = 151 kpsi and at the critical locatio...

Given a part with S_{ut} = 151 kpsi and at the critical location of the part, S_{e} = 67.5 kpsi. For the loading of Fig. 6–33, estimate the number of repetitions of the stress-time block in Fig. 6–33 that can be made before failure.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Fig. 6–18, p. 277, for S_{ut} = 151 kpsi, f = 0.795. From Eq. (6–14),

a =\frac{( f S_{ut} )^{2}}{S_{e}}                  (6–14)

a =\frac{( f S_{ut} )^{2}}{S_{e}} =\frac {[0.795(151)]^{2}}{67.5 }= 213.5  kpsi

From Eq. (6–15),

b = −\frac {1}{3} log \left ( \frac {f S_{ut}}{S_{e}}\right)                   (6–15)

b = −\frac {1}{3} log \left ( \frac {f S_{ut}}{S_{e}}\right)= −\frac {1}{3} log \left [ \frac {0.795 (151)}{67.5}\right]= −0.0833

So,

S_{f} = 213.5N^{−0.0833}                      N =\left ( \frac {S_{f}}{213.5}\right)^{−1/0.0833}                        (1), (2)

We prepare to add two columns to the previous table. Using the Gerber fatigue criterion, Eq. (6–47), p. 298, with S_{e} = S_{f} , and n = 1, we can write

Gerber     \frac{nσ_{a}}{S_{e}} + \left( \frac {nσ_{m}}{S_{ut}}\right)^{2}= 1                     (6–47)

S_{f}= \begin{cases} \frac {σ_{a}}{1 − (σ_{m}/S_{ut} )^{2}} & σ_{m} > 0 \\ S_{e} &σ_{m} ≤ 0  \end{cases}                   (3)

Cycle 1: r = σ_{a}/σ_{m} = 70/10 = 7, and the strength amplitude from Table 6–7, p. 299, is

Table 6–7  Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for Gerber and Langer Failure Criteria

Intersection Coordinates Intersecting Equations
S_{a} =\frac {r^{2}S^{2}_{ut}}{2S_{e}} \left [-1+\sqrt {1+\left (\frac {2S_{e}}{rS_{ut}}\right)^{2}}\right]

S_{m} =\frac {S_{a}}{r}

\frac {S_{a}}{S_{e}} +\left (\frac {S_{m}}{S_{ut}}\right)^{2}= 1

Load line r =\frac {S_{a}}{S_{m}}

S_{a} =\frac {r S_{y}}{1 + r}

S_{m} =\frac {S_{y}}{1 + r}

\frac {S_{a}}{S_{y}} +\frac {S_{m}}{S_{y}} = 1

Load line r =\frac {S_{a}}{S_{m}}

S_{m} =\frac {S^{2}_{ut}}{2S_{e}} \left [1 − \sqrt{1 + \left(\frac {2S_{e}}{S_{ut}}\right)^{2} \left(1 −  \frac {S_{y}}{S_{e}}\right) }\right]

S_{a} = S_{y} − S_{m},r_{crit} = S_{a}/S_{m}

\frac {S_{a}}{S_{e}} +\left (\frac {S_{m}}{S_{ut}}\right)^{2}= 1

\frac {S_{a}}{S_{y}} +\frac {S_{m}}{S_{y}} = 1

Fatigue factor of safety

n_{f} =\frac {1}{2} \left(\frac {S_{ut}}{σ_{m}}\right)^{2}  \frac {σ_{a}}{S_{e}}  \left [-1+\sqrt {1+\left (\frac {2σ_{m} S_{e}}{ S_{ut}σ_{a}}\right)^{2}}\right]              σ_{m}>0

S_{a} =\frac {7^{2}151^{2}}{2 (67.5)} \left\{-1+\sqrt {1+\left [\frac {2(67.5)}{7(151)}\right]^{2}}\right\}= 67.2     kpsi

Since σ_{a} > S_{a} , that is, 70 > 67.2, life is reduced. From Eq. (3),

S_{f} =\frac {70}{1 − (10/151)^{2}} = 70.3  kpsi

and from Eq. (2)

N =\left( \frac {70.3}{213.5} \right)^{−1/0.0833}= 619(10^{3}) cycles

Cycle 2: r = 10/50 = 0.2, and the strength amplitude is

S_{a} =\frac {0.2^{2}151^{2}}{2 (67.5)} \left\{-1+\sqrt {1+\left [\frac {2(67.5)}{0.2(151)}\right]^{2}}\right\}= 24.2      kpsi

Since σ _{a} < S_{a} , that is 10 < 24.2, then S_{f} = S_{e} and indefinite life follows. Thus, N→ ∞.

Cycle 3: r = 10/−30 = −0.333, and since σ_{m} < 0, S_{f} = S_{e} , indefinite life follows and N→ ∞

N, cycles  S_{f} , kpsi Cycle Number
619( 10^{3}) 70.3 1
67.5 2
67.5 3

From Eq. (6–58) the damage per block is

D =\sum { \frac { n_{i}}{N_{i}}}                       (6–58)

D =\sum { \frac { n_{i}}{N_{i}}}=N \left[ \frac {1}{619(10^{3})}  +\frac {1}{∞} +\frac {1}{∞}\right]=\frac {N}{619(10^{3})}

Setting D = 1 yields N = 619(10^{3}) cycles.

6.18

Related Answered Questions