Question 2.6.15: Given a part with Sut= 151 kpsi and at the critical location...

Given a part with S_{ut}= 151 kpsi and at the critical location of the part, Se= 67.5 kpsi.
For the loading of Fig. 6–33, estimate the number of repetitions of the stress-time block in Fig. 6–33 that can be made before failure.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Fig. 6–18, p. 285, for S_{ut}= 151 \ kpsi \ , \ f = 0.795.

From Eq. (6–14),

a={\left(fS_{ut}\right)^2 } / {S_e}       (6–14)

a=\frac{\left(fS_{ut}\right)^2 }{S_e}=\frac{\left[0.795\left(151\right) \right]^2 }{67.5} =213.5 kpsi

From Eq.(6–15),

b=- [\log \left({fS_{ut}}/{S_e} \right) /3       (6–15)

b=-\frac{1}{3} \log \left(\frac{fS_{ut}}{S_e} \right) =-\frac{1}{3} \log \left[\frac{0.795\left(151\right) }{67.5} \right] =-0.0833

so.

S_f=213.5N^{-0.0833}      N=\left(\frac{S_f}{213.5} \right) ^{-{1}/{0.0833}}   (1),(2)

 

We prepare to add two columns to the previous table. Using the Gerber fatigue criterion,
Eq. (6–47), p. 306, with S_e= S_f \ , \ and \ n = 1, we can write

 

Gerber  \frac{n\sigma _a}{S_e} +\left(\frac{n\sigma _m}{S_{ut}} \right)^2=1       (6–47)

S_f=\begin{cases} \frac{\sigma _a}{1-\left(\frac{\sigma _m}{S _{ut}} \right) } & \sigma _m\gt 0 \\S_e&\sigma _m\leq 0 \end{cases}     (3)

 

where S_f is the fatigue strength associated with a completely reversed stress,  \sigma _{rev} ,
equivalent to the fluctuating stresses [see Ex. 6–12, part (b)].

Cycle 1: r={\sigma _a}/{\sigma _m}={70}/{10}=7 , and the strength amplitude from Table 6–7, p. 307

Table 6–7
Amplitude and Steady Coordinates of Strength and Important
Intersections in First Quadrant for Gerber and Langer Failure Criteria
Intersecting Equations Intersection Coordinates
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2  =1
Load liner=\frac{S_a}{S_m}
S_a=\frac{r^2S^2_{ut}}{2S_e} \left[-1+\sqrt{1+\left(\frac{2S_e}{rS_{ut}} \right)^2 } \right]

S_m=\frac{S_a}{r}

\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
Load liner=\frac{S_a}{S_m}
S_a=\frac{rS_y}{1+r}
S_m=\frac{S_y}{1+r}
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2  =1
\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
S_m=\frac{2S^2_{ut}}{2S_e} \left[1-\sqrt{1+\left(\frac{2S_e}{S_{ut}} \right)^2 \left(1-\frac{S_y}{S_e} \right) } \right]

S_{a} = S_{y}- S_{m}  ,  r_{crit}={S_a}/{S_m}

Fatigue factor of safety
n_f=\frac{1}{2} \left(\frac{S_{ut}}{\sigma _m} \right)^2\frac{\sigma _a}{S_e}\left[-1+\sqrt{1+\left(\frac{2\sigma _mS_e}{S_{ut}\sigma _a} \right)^2 } \right]    \ \sigma _m\gt  0

, is

S_a=\frac{7^2151^2}{2\left(67.5\right) } \left\{-1+\sqrt{1+\left[\frac{2\left(67.5\right) }{7\left(151\right) } \right]^2 } \right\} =67.5 kpsi

 

Since \sigma _a\gt S_a that is, 70\gt 67.2, life is reduced. From Eq. (3),

 

S_f=\frac{70}{1-\left({10}/{151}\right)^2 } =70.3 kpsi

 

and from Eq. (2)

 

N=\left(\frac{70.3}{213.5} \right) ^{-{1}/{0.0833}}=619\left(10^3\right) cycles

 

Cycle 2: r={10}/{50}=0.2 and the strength amplitude is

 

S_a=\frac{0.2^2151^2}{2\left(67.5\right) } \left\{-1+\sqrt{1+\left[\frac{2\left(67.5\right) }{0.2\left(151\right) } \right]^2 } \right\} =24.2 kpsi

 

Since \sigma _a\lt S_a , that is 10 \lt 24.2, then S_f = S_e  and indefinite life follows. Thus,N\longrightarrow \infty .

 

Cycle 3: r ={ 10}/{−30} = −0.333, and since \sigma _m \lt 0, S_f = S_e, indefinite life follows and N\longrightarrow \infty

 

Cycle Number S_{f}, kpsi N, cycles
1 70.3 619\left(10^3\right)
2 67.5 \infty
3 67.5 \infty

 

From Eq. (6–58)

D=\sum{\frac{n_i}{N_i} }

the damage per block is

 

D=\sum{\frac{n_i}{N_i} } =N\left[\frac{1}{619\left(10^3\right) }+\frac{1}{\infty }+ \frac{1}{\infty } \right] =\frac{N}{619\left(10^3\right) }

 

Setting D = 1 yields N= 619\left(10^3\right) cycles.

6-18

Related Answered Questions