Question 6.17: Given is a three-pipe series system, as in Fig. 6.24a. The t...

Given is a three-pipe series system, as in Fig. 6.24a. The total pressure drop is p_A - p_B = 150,000 Pa, and the elevation drop is z_A - z_B = 5 m. The pipe data are

Pipe L, m d, cm ε, mm ε/d
1 100 8 0.24 0.003
2 150 6 0.12 0.002
3 80 4 0.20 0.005

The fluid is water, ρ = 1000 kg/m^3 and ν = 1.02 × 10^{-6}  m^2/s. Calculate the flow rate Q in m^3/h through the system.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The total head loss across the system is

\Delta h_{A→B} = \frac{p_A – p_B}{\rho g} + z_A – z_B = \frac{150,000}{1000(9.81)} + 5  m = 20.3  m

From the continuity relation (6.84) the velocities are

V_1d^2_1  = V_2d^2_2 = V_3d^2_3                  (6.48)

V_2 = \frac{d^2_1}{d^2_2} V_1 = \frac{16}{9} V_1                       V_3 = \frac{d^2_1}{d^2_3}V_1 = 4V_1

and              Re_2 = \frac{V_2d_2}{V_1d_1} Re_1 = \frac{4}{3}Re_1                       Re_3 = 2Re_1

Neglecting minor losses and substituting into Eq. (6.86), we obtain

\Delta h_{A→B} = \frac{V^2_1}{2g} \left(\frac{f_1L_1}{d_1} + \sum{K_1}\right) + \frac{V^2_2}{2g} \left(\frac{f_2L_2}{d_2} + \sum{K_2}\right) + \frac{V^2_3}{2g} \left(\frac{f_3L_3}{d_3} + \sum{K_3}\right)                          (6.86)

\Delta h_{A→B} = \frac{V^2_1}{2g} \left[1250f_1 + 2500 \left(\frac{16}{9}\right)^2 f_2 + 2000(4)^2f_3\right]

or               20.3  m = \frac{V^2_1}{2g}(1250f_1 + 7900f_2 + 32,000f_3)                   (1)

This is the form that was hinted at in Eq. (6.87). It seems to be dominated by the third pipe loss 32,000f_3. Begin by estimating f_1,  f_2,  and  f_3 from the Moody-chart fully rough regime:

\Delta h_{A→B} = \frac{V^2_1}{2g}(\alpha_0 + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3)                        (6.87)

f_1 = 0.0262              f_2 = 0.0234              f_3 = 0.0304

Substitute in Eq. (1) to find V_1^2 \approx 2g(20.3)/(33 + 185 + 973). The first estimate thus is V_1 = 0.58 m/s, from which

Re_1 \approx 45,400            Re_2 = 60,500               Re_3 = 90,800

Hence, from the Moody chart,

f_1 = 0.0288              f_2 = 0.0260              f_3 = 0.0314

Substitution into Eq. (1) gives the better estimate

V_1 = 0.565  m/s                 Q = \frac{1}{4}\pi d^2_1 V_1 =  2.84 \times 10^{-3}  m^3/s

or            Q = 10.2 m^3/h

A second iteration gives Q = 10.22 m^3/h, a negligible change.

Related Answered Questions