Question 1.5.1: Given that D¯=r^2 a¯r+2Sin θ a¯θ in spherical coordinate sys...

Given that \bar{D}=r^{2} \bar{a}_{r}+2 \operatorname{Sin} \theta \bar{a}_{\theta} in spherical coordinate system, where D is the electric flux density, find the charge density p?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given, } \vec{D}=r^{2} a_{r}+2 \sin \theta a_{\theta} and \vec{D}=D_{r} a^{-1} r+D \vec{a}_{\theta}+D_{\phi} \vec{a}_{\phi}

So,

\begin{aligned}&D r=r^{2} \\&D \vartheta=2 \sin \vartheta \\&D \varnothing=0\end{aligned}

and,

\begin{array}{r}P_{V}=\nabla \cdot \vec{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} D r\right)+\frac{1}{r \sin \theta} \cdot \frac{\partial}{\partial \theta} \\\left(D_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial D_{\phi}}{\partial \phi}\end{array}

 

\begin{aligned}&=\frac{1}{r^{2}} 4 r^{3}+\frac{2}{r \sin \theta} 2 \sin \theta \cdot \cos \theta \\&=4 r+\frac{4}{r} \cos \theta \\&=4\left[r+\frac{1}{r} \cos \theta\right]\end{aligned}

Related Answered Questions