Question 7.1: Given the following velocity field, determine if the Euleria...

Given the following velocity field, determine if the Eulerian acceleration is zero:\nu=Ax\hat{i}-Ay\hat{j}, where A is a number.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Although \nu is independent of time and thus does not have a local component of acceleration (i.e., it is a steady flow), we must check the convec-tive part. Note, therefore, that the Cartesian components of \nu are

                                       \nu _{x}=Ax,          \nu _{y}=-Ay

and the velocity gradients are

\frac{\partial\nu _{x}}{\partial x}=A,      \frac{\partial\nu _{x}}{\partial y}=0, \frac{\partial\nu _{y}}{\partial x}=0,       \frac{\partial\nu _{y}}{\partial y}=-A.

Hence, from Eq. (7.22),

a_{x}=\frac{\partial \nu _{x}}{\partial t}+\nu _{x}\frac{\partial\nu _{x}}{\partial x}+\nu _{y}\frac{\partial\nu _{x}}{\partial y}+\nu _{z}\frac{\partial \nu _{x}}{\partial z},

 

a_{y}=\frac{\partial \nu _{y}}{\partial t}+\nu _{x}\frac{\partial\nu _{y}}{\partial x}+\nu _{y}\frac{\partial\nu _{y}}{\partial y}+\nu _{z}\frac{\partial \nu _{y}}{\partial z},

 

a_{z}=\frac{\partial \nu _{z}}{\partial t}+\nu _{x}\frac{\partial\nu _{z}}{\partial x}+\nu _{y}\frac{\partial\nu _{z}}{\partial y}+\nu _{z}\frac{\partial \nu _{z}}{\partial z}.                                  (7.22)

a=\left[0+Ax(A)+(-Ay)(0)+0\right]\hat{i}+\left[0+Ax(0)+(-Ay)(- A)+0\right]\hat{j}+0\hat{k},
or
                                    a=A^{2}\left(x\hat{i}+y\hat{j} \right)

and, consequently, the acceleration is not zero.

 

Related Answered Questions