Given the following velocity field, determine if the Eulerian acceleration is zero:\nu=Ax\hat{i}-Ay\hat{j}, where A is a number.
Given the following velocity field, determine if the Eulerian acceleration is zero:\nu=Ax\hat{i}-Ay\hat{j}, where A is a number.
Although \nu is independent of time and thus does not have a local component of acceleration (i.e., it is a steady flow), we must check the convec-tive part. Note, therefore, that the Cartesian components of \nu are
\nu _{x}=Ax, \nu _{y}=-Ayand the velocity gradients are
\frac{\partial\nu _{x}}{\partial x}=A, \frac{\partial\nu _{x}}{\partial y}=0, \frac{\partial\nu _{y}}{\partial x}=0, \frac{\partial\nu _{y}}{\partial y}=-A.Hence, from Eq. (7.22),
a_{x}=\frac{\partial \nu _{x}}{\partial t}+\nu _{x}\frac{\partial\nu _{x}}{\partial x}+\nu _{y}\frac{\partial\nu _{x}}{\partial y}+\nu _{z}\frac{\partial \nu _{x}}{\partial z},a_{y}=\frac{\partial \nu _{y}}{\partial t}+\nu _{x}\frac{\partial\nu _{y}}{\partial x}+\nu _{y}\frac{\partial\nu _{y}}{\partial y}+\nu _{z}\frac{\partial \nu _{y}}{\partial z},
a_{z}=\frac{\partial \nu _{z}}{\partial t}+\nu _{x}\frac{\partial\nu _{z}}{\partial x}+\nu _{y}\frac{\partial\nu _{z}}{\partial y}+\nu _{z}\frac{\partial \nu _{z}}{\partial z}. (7.22)
a=\left[0+Ax(A)+(-Ay)(0)+0\right]\hat{i}+\left[0+Ax(0)+(-Ay)(- A)+0\right]\hat{j}+0\hat{k},
or
a=A^{2}\left(x\hat{i}+y\hat{j} \right)
and, consequently, the acceleration is not zero.