Question 10.4: Given the result of Eq. (10.43), find the relation for the b...

Given the result of Eq. (10.43), find the relation for the balloon radius given a constant \overline{\nu }_{s}. 4\pi r^{2}\frac{dr}{dt}=\overline{\nu }_{s}\pi a^{2},

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation (10.43) can be written as

                                        \left[r(t)\right]^{2}\frac{dr}{dt}=\frac{\overline{\nu }_{s}a^{2} }{4}.

Hence, integrating from time t=0 to time t, we have

                                                          \int_{0}^{t}{\left[r(t)\right]^{2} }\frac{dr}{dt}dt=\int_{0}^{t}{\frac{\overline{\nu }_{s}a^{2} }{4} }dt,
or
                                                  \frac{\left[r(t)\right]^{3} }{3}-\frac{\left[r(0)\right]^{3} }{3}=\frac{\overline{\nu }_{s}a^{2} }{4}t

and, thus,

                                                        r(t)=\left(\left[r(0)\right]^{3}+\frac{3\overline{\nu }_{s}a^{2} }{4}t \right)^{1/3}.

Related Answered Questions

Experimentalists seek to design tests that are the...
Again, we must design an appropriate experiment. C...