Question 2.1: Helium gas from a storage tank at 1000 kPa and 310 K is flow...

Helium gas from a storage tank at 1000 kPa and 310 K is flowing out through a convergent nozzle of exit area 3  cm ^{2}  to another tank. When the mass flow rate is 0.15  kg s ^{-1}, determine the pressure in the second tank.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given, p_{0}=1000 kPa \text { and } T_{0}=310 K. The maximum mass flow through the nozzle is at choked condition with M_{e}=1 and is given by

\dot{m}_{\max }=\sqrt{\gamma\left(\frac{2}{\gamma+1}\right)^{(\gamma+1) /(\gamma-1)} \frac{p_{0}^{2}}{R T_{0}}} A^{*}

 

For helium gas, \gamma=1.67 and the gas constant is given by

R=\frac{R_{u}}{\text { molecular weight }}=\frac{8314}{4.003}=2077 J ( kg K )^{-1}

 

Therefore,

\dot{m}_{\max }=\frac{0.7266 \times 1000 \times 10^{3}}{\sqrt{2077 \times 310}} 3 \times 10^{-4}=0.27 kg s ^{-1}

 

The given mass flowrate 0.15 kg s ^{-1} is less than the critical value and hence M_{e} is subsonic.

\dot{m}=0.15=\rho_{e} A_{e} V_{e}

 

=\left(\frac{\rho_{e}}{\rho_{0}}\right) \rho_{0} A_{e} M_{e}\left(\frac{a_{e}}{a_{0}}\right) a_{0}

 

=\rho_{0} a_{0} A_{e} M_{e}\left(\frac{\rho_{e}}{\rho_{0}}\right)\left(\frac{T_{e}}{T_{0}}\right)^{1 / 2}

 

=\rho_{0} a_{0} A_{e} M_{e}\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)^{\frac{-1}{\gamma-1}}\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)^{-0.5}

 

For helium, \gamma=1.67, so

0.15=\rho_{0} a_{0} A_{e} M_{e}\left(1+0.33 M_{e}^{2}\right)^{-2}

 

Also,

\rho_{0}=\frac{p_{0}}{R T_{0}}

 

=\frac{1000 \times 10^{3}}{2077 \times 310}

 

=1.553 kg m ^{-3}

 

a_{0}=\sqrt{\gamma R T_{0}}

 

=\sqrt{1.67 \times 2077 \times 310}

 

=1036.95 m s ^{-1}

 

A_{e}=3 \times 10^{-4} m ^{2}

 

Thus,

0.15=\frac{0.4831 M_{e}}{\left(1+0.335 M_{e}^{2}\right)^{2}}

 

Now let us solve for M_{e} by trial and error.

Trial 1 Let M_{e}=0.3.

RHS \approx 0.145

Trial 2 Let M_{e}=0.32.

RHS \approx 0.15

Hence, M_{e}=0.32.

By isentropic relation, we have

\frac{p_{0}}{p_{e}}=\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)^{\frac{\gamma}{\gamma-1}}

 

=\left(1+0.335 M_{e}^{2}\right)^{2.493}

 

= 1.087

 

Thus, the pressure in the second tank is

p_{e}=\frac{p_{0}}{1.087}

 

=\frac{1000 \times 10^{3}}{1.087}

 

= 919.96  kPa

Related Answered Questions