If plane z=0 carries uniform current K=K_{y}a_{y}
H=\begin{cases} 1/2K_{y}a_{x}, & z\gt 0 \\-1/2K_{y}a_{x}, & z\lt 0\end{cases}
This was obtained in Section 7.4 by using Ampère’s law. Obtain this by using the concept of vector magnetic potential.
If plane z=0 carries uniform current K=K_{y}a_{y}
H=\begin{cases} 1/2K_{y}a_{x}, & z\gt 0 \\-1/2K_{y}a_{x}, & z\lt 0\end{cases}
This was obtained in Section 7.4 by using Ampère’s law. Obtain this by using the concept of vector magnetic potential.
Consider the current sheet as in Figure 7.21. From eq. (7.42)
A=\int_{S}\frac{\mu_{o}KdS}{4\pi R} for surface current
dA=\int_{S}\frac{\mu_{o}KdS}{4\pi R}
In this problem, K=K_{y}a_{y}, dS=dx^{'}dy^{'}, and for z\gt 0
R=|R|=|(0,0,z)-(x^{'},y^{'},0)|=[(x^{'})^{2}+(y^{'})^{2}+z^{2}]^{1/2} (7.8.1)
where the primed coordinates are for the source point while the unprimed coordinates are for the field point. It is necessary (and customary) to distinguish between the two points to avoid confusion (see Figure 7.19). Hence
dA=\frac{\mu_{o}K_{y}dx^{'}dy^{'}a_{y}}{4\pi[(x^{'})^{2}+(y^{'})^{2}+z^{2}]^{1/2}}
dB=\nabla \times dA=-\frac{\partial}{\partial z}dA_{y}a_{x}=\frac{\mu_{o}K_{y}zdx^{'}dy^{'}a_{x}}{4\pi[(x^{'})^{2}+(y^{'})^{2}+z^{2}]^{3/2}}
B=\frac{\mu_{o}K_{y}za_{x}}{4\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\frac{dx^{'}dy^{'}}{[(x^{'})^{2}+(y^{'})^{2}+z^{2}]^{3/2}} (7.8.2)
In the integrand, we may change coordinates from Cartesian to cylindrical for convenience so that
B=\frac{\mu_{o}K_{y}za_{x}}{4\pi}\int_{\rho^{'}=0}^{\infty}\int_{\phi^{'}=0}^{2\pi}\frac{\rho^{'}d\phi^{'}d\rho^{'}}{[(\rho^{'})^{2}+z^{2}]^{3/2}}
=\frac{\mu_{o}K_{y}za_{x}}{4\pi}2\pi\int_{0}^{\infty}[(\rho^{'})^{2}+z^{2}]^{-3/2}1/2d[(\rho^{'})^{2}]
=\frac{\mu_{o}K_{y}za_{x}}{2}\frac{-1}{[(\rho^{'})^{2}+z^{2}]^{1/2}}|_{\rho^{'}=0}^{\infty}=\frac{\mu_{o}K_{y}a_{x}}{2}
Hence
H=\frac{B}{\mu_{o}}=\frac{K_{y}}{2}a_{x}, for z\gt 0
By simply replacing z by -z in eq. (7.8.2) and following the same procedure, we obtain
H=-\frac{K_{y}}{2}a_{x}, for z\lt 0