Initially we calculate the minor Poisson’s ratio ν_{t l} . From Eq. (24.14)
\frac{ν_{t 1}}{E_{t}}=\frac{ν_{l t}}{E_{l}} (24.14)
ν_{t l}=\frac{E_{t}}{E_{l}} ν_{l t}=\frac{10000}{140000} \times 0.3=0.021
Again, for a symmetric orthotropic ply the reduced stiffness terms, k_{13} and k_{23} are zero [Ref. 2]. Then, from Eq. (24.17)
\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}\frac{E_{l}}{1-ν_{l t} ν_{t 1}} & \frac{ν_{t l} E_{l}}{1-ν_{l t} ν_{t l}} &0\\\frac{ν_{l t} E_{t}}{1-ν_{l t} ν_{t l}}&\frac{E_{t}}{1-ν_{l t} ν_{t l}} & 0 \\0 & 0 & G_{1 t}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{l}\\\varepsilon_{t}\\\gamma_{l t}\end{array}\right\} (24.17)
k_{11}=E_{l} /\left(1-ν_{l t} ν_{t l}\right)=140000 /(1-0.3 \times 0.021)=140888 N / mm ^{2}
Similarly k_{12}=2958 N / mm ^{2}, k_{22}=10060 N / mm ^{2} \text { and } k_{33}=5000 N / mm ^{2}. The ply angle \theta=0^{\circ} so that in Eq. (24.31) m=\cos \theta=1 and \sin \theta=0 . Then
\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}m^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right.&m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&m^{3}n\left(k_{11}-k_{12}-2k_{33}\right)\\\left.+4k_{33}\right)+n^{4}k_{22}&+\left(m^{4}+n^{4}\right)k_{12}&+mn^{3}\left(k_{12}-k_{22}+2k_{33}\right)\\m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&n^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right. & m n^{3}\left(k_{11}-k_{12}-2 k_{33}\right)\\+\left(m^{4}+n^{4}\right)k_{12}&\left.+4k_{33}\right)+m^{4} k_{22} & +m^{3} n\left(k_{12}-k_{22}+2 k_{33}\right)\\m^{3} n\left(k_{11}-k_{12}-2k_{33}\right)&mn^{3}\left(k_{11}-k_{12}-2k_{33}\right)&m^{2}n^{2}\left(k_{11}+k_{22}-2k_{12}\right.\\+mn^{3}\left(k_{12}+k_{22}+2k_{33}\right)& +m^{3} n\left(k_{12}-k_{22}+2k_{33}\right)&\left.-2k_{33}\right)+\left(m^{4}+n^{4}\right)k_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{x} \\\varepsilon_{y} \\\gamma_{x y}\end{array}\right\} (24.31)
\bar{k}_{11}=k_{11}, \quad \bar{k}_{12}=k_{12}, \quad \bar{k}_{13}=0, \quad \bar{k}_{22}=k_{22}, \quad \bar{k}_{23}=0, \quad \bar{k}_{33}=k_{33}
There are four identical plies in the laminate each 0.15 mm thick. Therefore from Eq. (24.45) etc.
A_{11}=\sum\limits_{ p =1}^{ N }\left(z_{ p }-z_{ p -1}\right) \bar{k}_{11} (24.45)
A_{11}=4 \times 0.15 \times 140888=84533 N / mm
A_{12}=4 \times 0.15 \times 2958=1775 N / mm
A_{22}=4 \times 0.15 \times 10060=6036 N / mm
A_{33}=4 \times 0.15 \times 5000=3000 N / mm
The terms in the inverse of the [A] matrix are, then, from Eqs. (24.55)
a_{11}=\left(A_{22}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right)
a_{22}=\left(A_{11}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right)
a_{33}=1 / A_{33}
a_{12}=-\left(A_{12}\right) /\left(A_{11} A_{22}-A{_{12}}^{2}\right) (24.55)
a_{13}=0
a_{23}=0
a_{11}=6036 /\left(84533 \times 6036-1775^{2}\right)=1.19 \times 10^{-5}
Similarly a_{22}=16.65 \times 10^{-5}, a_{33}=33.33 \times 10^{-5}, a_{12}=-0.35 \times 10^{-5} From Eq. (24.56)
E_{x}=\frac{1}{t a_{11}} (24.56)
E_{z}=\frac{1}{4 \times 0.15 \times 1.19 \times 10^{-5}}=140000 N / mm ^{2}
From Eq. (24.59)
E_{y}=\frac{1}{t a_{22}} (24.59)
E_{y}=\frac{1}{4 \times 0.15 \times 16.65 \times 10^{-5}}=10000 N / mm ^{2}
From Eq. (24.57)
ν_{x y}=\frac{-\varepsilon_{y}}{\varepsilon_{x}}=\frac{-a_{12}}{a_{11}} (24.57)
ν_{x y}=\frac{-\left(-0.35 \times 10^{-5}\right)}{1.19 \times 10^{-5}}=0.3
From Eq. (24.60)
ν_{y x}=\frac{-a_{12}}{a_{22}} (24.60)
ν_{y x}=\frac{0.35 \times 10^{-5}}{16.65 \times 10^{-5}}=0.021
Also, from Eqs. (24.58) and (24.61) m_{x}=m_{y}=0.
\frac{\gamma_{x y}}{\varepsilon_{x}}=\frac{a_{13}}{a_{11}}=-m_{x} (24.58)
m_{ y }=\frac{-a_{23}}{a_{22}} (24.61)
Again, as in Example 24.8, the equivalent elastic constants for the laminate are the same as the elastic constants of the plies. This is to be expected since the four plies are identical and orientated in the same way.