If the ply angle in the laminate of Example 24.9 is 45° calculate the equivalent elastic constants.
If the ply angle in the laminate of Example 24.9 is 45° calculate the equivalent elastic constants.
The minor Poisson’s ratio has the same value, 0.021, as in Example 24.9. Also the reduced stiffness terms are the same as in Example 24.9, i.e., k_{13}=k_{23}=0, k_{11}=140888 N / mm ^{2}, k_{12}=2958 N / mm ^{2}, k_{22}=10060 N / mm ^{2} and k_{33}=5000 N / mm ^{2}. Now, however, \theta=45^{\circ} so that m=\cos 45^{\circ}=1 / \sqrt{2} and n=\sin 45^{\circ}=1 / \sqrt{2} Then, in Eq. (24.31)
\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}m^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right.&m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&m^{3}n\left(k_{11}-k_{12}-2k_{33}\right)\\\left.+4k_{33}\right)+n^{4}k_{22}&+\left(m^{4}+n^{4}\right)k_{12}&+mn^{3}\left(k_{12}-k_{22}+2k_{33}\right)\\m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&n^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right. & m n^{3}\left(k_{11}-k_{12}-2 k_{33}\right)\\+\left(m^{4}+n^{4}\right)k_{12}&\left.+4k_{33}\right)+m^{4} k_{22} & +m^{3} n\left(k_{12}-k_{22}+2 k_{33}\right)\\m^{3} n\left(k_{11}-k_{12}-2k_{33}\right)&mn^{3}\left(k_{11}-k_{12}-2k_{33}\right)&m^{2}n^{2}\left(k_{11}+k_{22}-2k_{12}\right.\\+mn^{3}\left(k_{12}+k_{22}+2k_{33}\right)& +m^{3} n\left(k_{12}-k_{22}+2k_{33}\right)&\left.-2k_{33}\right)+\left(m^{4}+n^{4}\right)k_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{x} \\\varepsilon_{y} \\\gamma_{x y}\end{array}\right\} (24.31)
\bar{k}_{11}=m^{4} k_{11}+m^{2} n^{2}\left(2 k_{12}+4 k_{33}\right)+n^{4} k_{22} (i)
Substituting the above values of k_{11} etc. in Eq. (i) gives
\bar{k}_{11}=44216 N / mm ^{2}
\bar{k}_{12}=34216 N / mm ^{2}
\bar{k}_{13}=32707 N / mm ^{2}
Similarly \bar{k}_{22}=44216 N / mm ^{2}
\bar{k}_{23}=32707 N / mm ^{2}
\bar{k}_{33}=36258 N / mm ^{2}
Then, from Eq. (24.45)
A_{11}=\sum\limits_{ p =1}^{ N }\left(z_{ p }-z_{ p -1}\right) \bar{k}_{11} (24.45)
A_{11}=4 \times 0.15 \times 44216=25296 N / mm
A_{12}=20530 N / mm
A_{13}=19624 N / mm
Similarly A_{22}=25296 N / mm
A_{23}=19624 N / mm
A_{33}=21755 N / mm
From Eq. (24.53)
A A=A_{11} A_{22} A_{33}+2 A_{12} A_{23} A_{13}-A_{22} A_{13}^{2}-A_{33} A_{12}^{2}-A_{11} A_{23}{ }^{2} (24.53)
A A=25296 \times 25296 \times 21755+2 \times 20530 \times 19624 \times 19624-25296 \times 19624^{2}-21755 \times 20530^{2} -25296 \times 19624^{2}
\text { i.e., } A A=1.08 \times 10^{12}
Then, from Eqs. (24.52)
a_{11}=\left(A_{22} A_{33}-A_{23}^{2}\right) / A A
a_{22}=\left(A_{11} A_{33}-A_{13}^{2}\right) / A A
a_{33}=\left(A_{11} A_{22}-A_{12}^{2}\right) / A A
a_{12}=\left(A_{13} A_{23}-A_{12} A_{33}\right) / A A (24.52)
a_{13}=\left(A_{12} A_{23}-A_{22} A_{13}\right) / A A
a_{23}=\left(A_{12} A_{13}-A_{11} A_{23}\right) / A A
a_{11}=\left(25296 \times 21755-19624^{2}\right) / 1.08 \times 10^{12}=1.53 \times 10^{-4}
a_{22}=1.53 \times 10^{-4}
a_{33}=2.02 \times 10^{-4}
Similarly a_{12}=-0.57 \times 10^{-4}
a_{13}=-0.87 \times 10^{-4}
a_{23}=-0.87 \times 10^{-4}
From Eq. (24.56)
E_{x}=\frac{1}{t a_{11}} (24.56)
E_{x}=\frac{1}{4 \times 0.15 \times 1.53 \times 10^{-4}}=10893 N / mm ^{2}
From Eq. (24.59)
E_{y}=\frac{1}{t a_{22}} (24.59)
E_{y}=\frac{1}{4 \times 0.15 \times 1.53 \times 10^{-4}}=10893 N / mm ^{2}
From Eq. (24.62)
\frac{\bar{\tau}_{x y}}{\gamma_{x y}}=\frac{1}{t a_{33}}=G_{x y} (24.62)
G_{x y}=\frac{1}{4 \times 0.15 \times 2.02 \times 10^{-4}}=8251 N / mm ^{2}
From Eq. (24.57)
ν_{x y}=\frac{-\varepsilon_{y}}{\varepsilon_{x}}=\frac{-a_{12}}{a_{11}} (24.57)
ν_{x y}=\frac{-\left(-0.57 \times 10^{-4}\right)}{1.53 \times 10^{-4}}=0.37
From Eq. (24.60)
ν_{y x}=\frac{-a_{12}}{a_{22}} (24.60)
ν_{y x}=\frac{-\left(-0.57 \times 10^{-4}\right)}{1.53 \times 10^{-4}}=0.37
From Eq. (24.58)
\frac{\gamma_{x y}}{\varepsilon_{x}}=\frac{a_{13}}{a_{11}}=-m_{x} (24.58)
m_{x}=\frac{-\left(-0.87 \times 10^{-4}\right)}{1.53 \times 10^{-4}}=0.57
From Eq. (24.61)
m_{ y }=\frac{-a_{23}}{a_{22}} (24.61)
m_{y}=\frac{-\left(-0.87 \times 10^{-4}\right)}{1.53 \times 10^{-4}}=0.57
Since the shear coupling coefficients have values it follows that, for this laminate, direct loads will produce shear strains and shear loads will produce direct strains. However, in many laminate configurations the ply angles are chosen such that the shear coupling effect is eliminated.