Question 4.68: Imagine a hydrogen atom at the center of an infinite spheric...

Imagine a hydrogen atom at the center of an infinite spherical well of radius b. We will take b to be much greater than the Bohr radius (a) , so the low-n states are not much affected by the distant “wall” at r = b . But since u(b) = 0 we can use the method of Problem 2.61 to solve the radial equation (4.53) numerically.

-\frac{\hbar^{2}}{2 m_{e}} \frac{d^{2} u}{d r^{2}}+\left[-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}+\frac{\hbar^{2}}{2 m_{e}} \frac{\ell(\ell+1)}{r^{2}}\right] u=E u           (4.53).

(a) Show that v_j (in Problem 2.61) takes the form

v_{j}=-\frac{2 \beta}{j}+\frac{\ell(\ell+1)}{j^{2}} \text { where } \beta \equiv \frac{b}{(N+1) a} .

(b) We want \Delta r \ll a (so as to sample a reasonable number of points within the potential) and a \ll b (so the wall doesn’t distort the atom too much).
Thus

1 \ll \beta^{-1} \ll N .

Let’s use β = 1/150 and N= 1000. Find the three lowest eigenvalues of H for \ell=0, \quad \ell=1, \text { and } \ell=2 , and plot the corresponding eigenfunctions. Compare the known (Bohr) energies (Equation 4.70).
Note: Unless the wave function drops to zero well before r = b, the energies of this system cannot be expected to match those of free hydrogen, but they are of interest in their own right as allowed energies of “compressed” hydrogen.

E_{n}=-\left[\frac{m_{e}}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}=\frac{E_{1}}{n^{2}}, \quad n=1,2,3, \ldots           (4.70).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The effective potential is (Equation 4.53):

-\frac{\hbar^{2}}{2 m_{e}} \frac{d^{2} u}{d r^{2}}+\left[-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}+\frac{\hbar^{2}}{2 m_{e}} \frac{\ell(\ell+1)}{r^{2}}\right] u=E u           (4.53).

V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}+\frac{\hbar^{2}}{2 m_{e}} \frac{\ell(\ell+1)}{r^{2}} .

Now V_{j}=V\left(r_{j}\right), r_{j}=j \Delta r, \Delta r=\frac{b}{N+1}, \lambda=\frac{\hbar^{2}}{2 m_{e}(\Delta r)^{2}} , so

v_{j} \equiv \frac{V_{j}}{\lambda}=\frac{2 m_{e}}{\hbar^{2}} \frac{b^{2}}{(N+1)^{2}}\left[-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{(N+1)}{j b}+\frac{\hbar^{2}}{2 m_{e}} \frac{\ell(\ell+1)(N+1)^{2}}{j^{2} b^{2}}\right] .

=-\frac{2 m_{e} e^{2}}{4 \pi \epsilon_{0} \hbar^{2}} \frac{b}{(N+1)} \frac{1}{j}+\frac{\ell(\ell+1)}{j^{2}}=-\frac{2 b}{a(N+1)} \frac{1}{j}+\frac{\ell(\ell+1)}{j^{2}}=-\frac{2 \beta}{j}+\frac{\ell(\ell+1)}{j^{2}} .

(b)  \Delta r \ll a \ll b \Rightarrow \frac{b}{N+1} \ll \frac{b}{(N+1) \beta} \ll b \Rightarrow 1 \ll(1 / \beta) \ll N+1 \sim N , Note that u(0) = 0 (Equation 4.59), and u(b) = 0, so we have the same boundary conditions as Problem 2.61.

u(\rho) \sim C \rho^{\ell+1}            (4.59).

\underline{\ell=0}

h =\text { Table }[\operatorname{If}[i==j, \quad 2-(1 /(25 j)), 0],\{i, 1000\},\{j, 1000\}] .

k =\text { Table }[\operatorname{If}[i==j+1,-1,0],\{i, 1000\},\{j, 1000\}] .

m =\text { Table }[\operatorname{If}[i== j -1,-1,0],\{ i , 1000\},\{ j , 1000\}] .

p=\text { Table }[h[[i, j]]+k[[i, j]]+m[[i, j]],\{i, 1000\},\{j, 1000\}] .

EIG = Eigenvalues[N[p]].

EVE = Eigenvectors[N[p]].

ListLinePlot [EVE[[994]], PlotRange – >\{0,0.11\} ].

ListLinePlot [EVE[[997]], PlotRange – >\{-0.05,0.07\} ].

ListLinePlot [EVE[[999]], PlotRange – >\{-0.05,0.07\} ].

EIG[[994]]

-0.00039996

EIG[[997]]

-0.0000999873

EIG[[999]]

-0.0000399639.

To get the actual energy (see Equation 2.199), multiply by \lambda=\frac{\hbar^{2}(N+1)^{2}}{2 m_{e} b^{2}}=\frac{\hbar^{2}}{2 m_{e} a^{2}} \frac{1}{\beta^{2}}=-E_{1} / \beta^{2} , in other words, we must multiply by 1 / \beta^{2}=2500 , and the result will be the energy in units of 13.6 eV (the exact answer, of course, would be -1/n² = -1,-0.25,-0.1111):

H \equiv \lambda\left(\begin{array}{cccccc} & & & & & & \\ & -1 & \left(2+v_{j-1}\right) & -1 & 0 & 0 & \\ & 0 & -1 & \left(2+v_{j}\right) & -1 & 0 & \\ & 0 & 0 & -1 & \left(2+v_{j+1}\right) & -1 & \\ & & & & & & \ddots \end{array}\right)             (2.199).

-0.00039996 \times(2500)=0.9999 E_{1},-0.000099987 \times(2500)=0.24997 E_{1},-0.000039964 \times(2500)=0.09991 E_{1} .

The first two are pretty good; the third is a bit off (but notice from the graph that the wave function has not dropped to zero well before r = b).

\underline{\ell=1 } .

h =\text { Table }\left[\operatorname{If}\left[i==j, 2-(1 /(25 j))+\left(2 /\left(j^{\wedge} 2\right)\right), 0\right],\{ i , 1000\},\{j, 1000\}\right] .

k =\text { Table }[\operatorname{If}[i= =j +1,-1,0],\{i, 1000\},\{ j , 1000\}] .

p=\text { Table }[h[[[i, j]]+k[[i, j]]+m[[i, j]],\{i, 1000\},\{j, 1000\}] .

EIG = Eigenvalues[N[p]].

EVE = Eigenvectors[N[p]].

ListLinePlot [EVE[[999]], PlotRange – >\{0,0.065\} ].

ListLinePlot [EVE[[999]], PlotRange – >\{-0.04,0.06\} ].

ListLinePlot [EVE[[1000]], PlotRange – >\{-0.06,0.05\} ].

EIG[[997]] * 2500

-0.249991

EIG[[999]] * 2500

-0.103278

EIG[[1000]] * 2500

0.0158618

For {\ell=1 }   the lowest state is n = 2, so the exact energies (in units of  E_1 ) are 0.25, 0.1111, and 0.0625.

0.24999E_1, 0.10328E_1, -0.015862E_1.

The first is good; the second is a bit off (but notice from the graph that the wave function has not dropped to zero well before r = b), and the third is terrible (wrong sign).

\underline{\ell=2}

h=\text { Table }[\text { If }[i==j, 2-(1 /(25 j))+(6 /(j \wedge 2)), 0],\{i, 1000\},\{j, 1000\}] .

k =\operatorname{Table}[\operatorname{If}[ i == j +1,-1,0],\{ i , 1000\},\{ j , 1000\}] .

m =\text { Table }[\operatorname{If}[ i == j -1,-1,0],\{ i , 1000\},\{ j , 1000\}] .

p =\operatorname{Table}[h[[i, j]]+k[[i, j]]+m[[i, j]],\{i, 1000\},\{j, 1000\}] .

EIG = Eigenvalues[N[p]].

EVE = Eigenvectors[N[p]].

ListLinePlot [EVE[[999]], PlotRange – >\{0,0.065\} ].

ListLinePlot [EVE[[1000]], PlotRange – >\{-0.05,0.05\} ].

ListLinePlot [EVE[[998]], PlotRange – >\{-0.06,0.05\} ].

EIG[[999]] * 2500

-0.107958

EIG[[1000]] * 2500

-0.0112765

EIG[[998]] * 2500

0.135962

\text { For } \ell=2 \text { the lowest state is } n=3 \text {, so the exact energies (in units of } E_{1} \text { ) are 0.1111, 0.0625, and } 0.04 \text {. }

0.10796E_1, 0.011277E_1, -0.13596E_1 .

The first is OK; the second is a way off, and the third is terrible (wrong sign). But in all three cases the wave function has not dropped to zero well before r = b. To improve the results we would a substantially larger b.

89
90
91
92
93
94
95
96
97

Related Answered Questions