Question 12.66: In a certain inertial frame S, the electric field E and the ...

In a certain inertial frame S, the electric field E and the magnetic field B are neither parallel nor perpendicular, at a particular space-time point. Show that in a different inertial system \overline{ S }, moving relative to S with velocity v given by

\frac{ v }{1+v^{2} / c^{2}}=\frac{ E \times B }{B^{2}+E^{2} / c^{2}},

the fields \overline{ E } \text { and } \overline{ B } are parallel at that point. Is there a frame in which the two are perpendicular?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Choose axes so that E points in the z direction and B in the yz plane: E = (0, 0, E); B =(0, B \cos \phi, B \sin \phi).

Go to a frame moving at speed v in the x direction:

\overline{ E }=(0,-\gamma v B \sin \phi, \gamma(E+v B \cos \phi)) ; \overline{ B }\left(0, \gamma\left(B \cos \phi+\frac{v}{c^{2}} E\right), \gamma B \sin \phi\right).

(I used Eq. 12.109.) Parallel provided \frac{-\gamma v B \sin \phi}{\gamma\left(B \cos \phi+\frac{v}{c^{2}} E\right)}=\frac{\gamma(E+v B \cos \phi)}{\gamma B \sin \phi} , or

-v B^{2} \sin ^{2} \phi=\left(B \cos \phi+\frac{v}{c^{2}} E\right)(E+v B \cos \phi)=E B \cos \phi+v B^{2} \cos ^{2} \phi+\frac{v}{c^{2}} E^{2}+\frac{v^{2}}{c^{2}} E B \cos \phi

 

0=v B^{2}+\frac{v}{c^{2}} E^{2}+E B \cos \phi\left(1+\frac{v^{2}}{c^{2}}\right) ; \frac{v}{1+v^{2} / c^{2}}=-\frac{E B \cos \phi}{B^{2}+E^{2} / c^{2}}

NowE \times B =\left|\begin{array}{ccc}\hat{ x } & \hat{ y } & \hat{ z } \\0 & 0 & E \\0 & B \cos \phi & B \sin \phi\end{array}\right|=-E B \cos \phi . \text { So } \frac{ v }{1+v^{2} / c^{2}}=\frac{ E \times B }{B^{2}+E^{2} / c^{2}} . qed

\begin{array}{ll}\bar{E}_{x}=E_{x}, \quad \bar{E}_{y}=\gamma\left(E_{y}-v B_{z}\right), & \bar{E}_{z}=\gamma\left(E_{z}+v B_{y}\right) \\\bar{B}_{x}=B_{x}, \quad \bar{B}_{y}=\gamma\left(B_{y}+\frac{v}{c^{2}} E_{z}\right), & \bar{B}_{z}=\gamma\left(B_{z}-\frac{v}{c^{2}} E_{y}\right)\end{array}                          (12.109)

No, there can be no frame in which E \perp B, for (E·B) is invariant, and since it is not zero in S it can’t be zero in \overline{ S }.

Related Answered Questions