Question 7.6: In a coaxial counterflow heat exchanger [such as the one sho...

In a coaxial counterflow heat exchanger [such as the one shown in Figure (b)], liquid water is the cold stream and flows in the inner cylinder with a mass flow rate \dot{M}_{c}=0.5Kg/s and an inlet temperature \left\langle T_{f,c}\right\rangle _{0} = 20^{\circ }C. Liquid Dowtherm J is the hot stream and flows in the annulus with a mass flow rate \dot{M}_{ h} = 0.25 kg/s, and an inlet temperature \left\langle T_{f,h}\right\rangle _{L} = 120^{\circ }C. The overall resistance is R_{\sum} = 0.001^{\circ }C/W.
(a) Show the expected temperature distribution for the hot and cold streams and draw the thermal circuit diagram.
(b) Determine the number of transfer units NTU [using (\dot{M}c_{ p} )_{min}].
(c) Determine the ratio of the thermal capacitances C_{r}.
(d) Determine the effectiveness \epsilon _{he}.
(e) Determine the exit temperature of the hot stream \left\langle T_{f,h}\right\rangle _{0} .
(f) Determine the exit temperature of the cold stream \left\langle T_{f,c}\right\rangle _{L}.
(g) Determine the average heat exchanger convection resistance \left\langle R_{u}\right\rangle _{L}.

Evaluate the thermophysical properties for the saturated states at p = 1.013 × 10^{5} Pa, as given in Table

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The temperature distributions along the heat exchanger, for the hot and cold streams, are shown in Figure (a). The results are for the quantitative analysis performed below. The thermal circuit diagram is shown in Figure (b).

(b) The definition of NTU for the two-stream heat exchange is given by NTU\equiv \frac{1}{R_{\sum}(\dot{M}c_{p})_{min}}      , 0\leq NTU\lt \infty , i.e.,

NTU\equiv \frac{1}{R_{\sum}(\dot{M}c_{p})_{min}}

To determine (\dot{M}c_{p})_{min} , we need to compare the two streams, i.e.,

(\dot{M}c_{p})_{c}=\dot{M}_{c}c_{p,c}             liquid water

  (\dot{M}c_{p})_{h}=\dot{M}_{c}c_{p,h}                liquid Dowtherm J.

From Table, we have
liquid water      c_{p,c} = 4,220 J/kg-^{\circ }C                           Table
liquid Dowtherm J              c_{p,h} = 2,400 J/kg-^{\circ }C                Table .

Then

(\dot{M}c_{p})_{c}=0.5(kg/s) × 4,220(J/kg-^{\circ }C) = 2,110 W/^{\circ }C

 

(\dot{M}c_{p})_{h}=0.25(kg/s) × 2,400(J/kg-^{\circ }C) = 600 W/^{\circ }C. 

Then

(\dot{M}c_{p})_{min}=(\dot{M}c_{p})_{h}= 600 W/^{\circ }C.

Next

NTU=\frac{1}{0.001(^{\circ }C/W) × 600(W/^{\circ }C)} = 1.667.

(c) The ratio of the heat capacitances C_{r} is defined by C_{r}\equiv \frac{(\dot{M}c_{p})_{min}}{(\dot{M}c_{p})_{max}} ,   0  \leq  C_{r}  \leq   1, i.e.,

C_{r}\equiv \frac{(\dot{M}c_{p})_{min}}{(\dot{M}c_{p})_{max}} =\frac{(\dot{M}c_{p})_{h}}{(\dot{M}c_{p})_{c}} =\frac{600(W/^{\circ }C)}{2,110(W/^{\circ }C)} = 0.2844.

(d) The \epsilon_{he}-NTU relation for the counterflow arrangement is given in Table,i.e.,

\epsilon _{he}=\frac{1-e^{-NTU(1-C_{r})}}{1-C_{r}e^{-NTU(1-C_{r})}} -\frac{1 − e^{−1.667}(1 − 0.2844)}{ − 0.2844e^{−1.667(1−0.2844)}}

 

=\frac{1 − e^{−1.193}}{1 − 0.2844e^{−1.193}} = 0.7625

(e) The hot-stream exit temperature \left\langle T_{f,h}\right\rangle _{0} is determined from the definition of \epsilon _{he}, for the counterflow arrangement, given by \epsilon _{he}\equiv \frac{\Delta \left\langle T_{f}\right\rangle\mid_{(\dot{M}c_{p})_{min}} }{\Delta T_{max}}

\epsilon _{he}=\frac{\left\langle T_{f,h}\right\rangle_{L}-\left\langle T_{f,h}\right\rangle_{0} }{\left\langle T_{f,h}\right\rangle_{L}-\left\langle T_{f,c}\right\rangle_{0}}

Solving this for \left\langle T_{f,h}\right\rangle_{0}, we have

  \left\langle T_{f,h}\right\rangle_{0}=\left\langle T_{f,h}\right\rangle_{L}-\epsilon _{he}(\left\langle T_{f,h}\right\rangle_{L}-\left\langle T_{f,c}\right\rangle_{0})

 

= 120(^{\circ }C) − 0.7625(120 − 20)(^{\circ }C) = 43.75^{\circ }C.

(f) The heat transfer rate \left\langle Q_{u}\right\rangle _{L-0} is determined from \left\langle Q_{u}\right\rangle _{L-0}=(\dot{M}c_{p})_{h}(\left\langle T_{f,h}\right\rangle_{0}-\left\langle T_{f,h}\right\rangle_{L} )=-(\dot{M}c_{p})_{h}\Delta T_{h}, i.e.,

\left\langle Q_{u}\right\rangle _{L-0}=-(\dot{M}c_{p})_{h}(\left\langle T_{f,h}\right\rangle_{L}-\left\langle T_{f,h}\right\rangle_{0} )=(\dot{M}c_{p})_{c}(\left\langle T_{f,c}\right\rangle_{L}-\left\langle T_{f,c}\right\rangle_{0})

Solving for \left\langle T_{f,c}\right\rangle_{L} , we have

  \left\langle T_{f,c}\right\rangle_{L}=\left\langle T_{f,c}\right\rangle_{0}-\frac{(\dot{M}c_{p})_{h}(\left\langle T_{f,h}\right\rangle_{L}-\left\langle T_{f,h}\right\rangle_{0})}{(\dot{M}c_{p})_{c}} =\left\langle T_{f,c}\right\rangle_{0}-\frac{\left\langle Q_{u}\right\rangle_{L-0} }{(\dot{M}c_{p})_{c}}

 

=20(^{\circ }C) −\frac{600(W/^{\circ }C) × 76.25(^{\circ }C)}{2,110(W/^{\circ }C)} =20(^{\circ }C) −\frac{4.575 × 10^{4}(W)}{2,110(W/^{\circ }C)}

 

= 41.79^{\circ }C.

The inlet and exit temperatures are shown in Figure (a)

(g) The average heat exchanger convection resistance \left\langle R_{u}\right\rangle _{L} is given by \left\langle R_{u}\right\rangle _{L}\equiv \frac{1}{(\dot{M}c_{p})_{min}\epsilon _{he}}       ,\epsilon _{he}=\epsilon _{he}(NTU,C_{r},heat   exchanger   type),
i.e.,

\left\langle R_{u}\right\rangle _{L}= \frac{1}{(\dot{M}c_{p})_{min}\epsilon _{he}}  

 

=\frac{1}{600(W/^{\circ }C) × 0.7625} = 0.002186^{\circ }C/W
a
b
gg

Related Answered Questions