Question 11.P.8: In an experiment, 650MeV π^0 pions are scattered from a heav...

In an experiment, 650MeVπ0650 MeV \pi^{0} pions are scattered from a heavy, totally absorbing nucleus of radius 1.4 fm.

(a) Estimate the total elastic and total inelastic cross sections.

(b) Calculate the scattering amplitude and check the validity of the optical theorem.

(c) Using the scattering amplitude found in (b), calculate and plot the differential cross section for elastic scattering. Calculate the total elastic cross section and verify that it agrees with the expression found in (a).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In the case of a totally absorbing nucleus, ηl(k)=0\eta_{l}(k)=0, the total elastic and inelastic cross sections, which are given by (11.113)

σel=4πl=0(2l+1)fl2=πk2l(2l+1)(1+ηl22ηlcos2δl)\sigma_{e l}=4 \pi \sum_{l=0}^{\infty}(2 l+1)\left|f_{l}\right|^{2}=\frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left(1+\eta_{l}^{2}-2 \eta_{l} \cos 2 \delta_{l}\right).           (11.113)

and (11.114),

σinel =πk2l=0(2l+1)(1ηl2(k))\sigma_{\text {inel }}=\frac{\pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1)\left(1-\eta_{l}^{2}(k)\right).           (11.114)

become equal:

σel=πk2l=0lmax(2l+1)=σinel \sigma_{e l}=\frac{\pi}{k^{2}} \sum_{l=0}^{l_{\max }}(2 l+1)=\sigma_{\text {inel }}.             (11.194)

This experiment can be viewed as a scattering of high-energy pions, E = 650MeV, from a black “disk” of radius a = 1.4 fm; thus, the number of partial waves involved in this scattering can be obtained from lmaxkal_{\max } \simeq k a, ehere k=2mπ0E/hˉ2k=\sqrt{2 m_{\pi^{0} E / \bar{h}^{2}}}. Since the rest mass energy of a π0\pi^{0} pion is mπ0c2135MeVm_{\pi^{0} }c^{2} \simeq 135 MeV and since c=197.33MeVfm\hbar c=197.33 MeV fm, we have

k2mπ0E2=2(mπ0c2)(hˉc)2=2(135MeV)(650MeV)(197.33MeVfm)2=2.12fm1k \simeq \sqrt{\frac{2 m_{\pi^{0} E}}{\hbar^{2}}}=\sqrt{\frac{2(m_{\pi ^{0}}c^{2})}{(\bar{h}c )^{2}} } =\sqrt{\frac{2(135 MeV )(650 MeV )}{(197.33 MeV fm )^{2}}}=2.12 fm ^{-1};                (11.195)

hence lmax=ka(2.12fm1)(1.4fm)=2.973l_{\max }=k a \simeq\left(2.12 fm ^{-1}\right)(1.4 fm )=2.97 \simeq 3. We can thus reduce (11.194) to

σel=σinel =πk2l=03(2l+1)=16πk216π(2.12fm1)2=40.1fm2=0.40 barn \sigma_{e l}=\sigma_{\text {inel }}=\frac{\pi}{k^{2}} \sum_{l=0}^{3}(2 l+1)=\frac{16 \pi}{k^{2}} \simeq \frac{16 \pi}{\left(2.12 fm ^{-1}\right)^{2}}=40.1 fm ^{2}=0.40 \text { barn }.               (11.196)

The total cross section

σtot =σel+σinel =32πk2=0.80 barn \sigma_{\text {tot }}=\sigma_{e l}+\sigma_{\text {inel }}=\frac{32 \pi}{k^{2}}=0.80 \text { barn }.                    (11.197)

(b) The scattering amplitude can be obtained from (11.112)

f(θ)=12kl=0(2l+1)[ηlsin2δl+i(1ηlcos2δl)]Pl(cosθ)f(\theta)=\frac{1}{2 k} \sum_{l=0}^{\infty}(2 l+1)\left[\eta_{l} \sin 2 \delta_{l}+i\left(1-\eta_{l} \cos 2 \delta_{l}\right)\right] P_{l}(\cos \theta).             (11.112)

with ηl(k)=0\eta_{l}(k)=0:

f(θ)=i2kl=03(2l+1)Pl(cosθ)f(\theta)=\frac{i}{2 k} \sum_{l=0}^{3}(2 l+1) P_{l}(\cos \theta)

 

=i2k[1+3cosθ+52(3cos2θ1)+72(5cos3θ3cosθ)]=\frac{i}{2 k}\left[1+3 \cos \theta+\frac{5}{2}\left(3 \cos ^{2} \theta-1\right)+\frac{7}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right)\right],               (11.198)

where we have used the following Legendre polynomials: P0(u)=1,P1(u)=u,P2(u)=12(3u21),P3(u)=12(5u33u)P_{0}(u)=1, P_{1}(u)=u, P_{2}(u)=\frac{1}{2}\left(3 u^{2}-1\right), P_{3}(u)=\frac{1}{2}\left(5 u^{3}-3 u\right). The forward scattering amplitude (θ = 0) is

f(0)=i2k[1+3+52(31)+72(53)]=8ikf(0)=\frac{i}{2 k}\left[1+3+\frac{5}{2}(3-1)+\frac{7}{2}(5-3)\right]=\frac{8 i}{k}.              (11.199)

Combining (11.197) and (11.199), we get the optical theorem: Imf(0)=(k/4π)σtot =8/k\operatorname{Im} f(0)=(k / 4 \pi) \sigma_{\text {tot }}=8 / k.

(c) From (11.198) the differential elastic cross section is

dσdΩ=f(θ)2=14k2[1+3cosθ+52(3cos2θ1)+72(5cos3θ3cosθ)]2\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}=\frac{1}{4 k^{2}}\left[1+3 \cos \theta+\frac{5}{2}\left(3 \cos ^{2} \theta-1\right)+\frac{7}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right)\right]^{2}.           (11.200)

As shown in Figure 11.9, the differential cross section displays an interference pattern due to the superposition of incoming and outgoing waves. The total elastic cross section is given by σel=0πf(θ)2sinθdθ02πdφ\sigma_{e l}=\int_{0}^{\pi}|f(\theta)|^{2} \sin \theta d \theta \int_{0}^{2 \pi} d \varphi which, combined with (11.200), leads to

σel=2π4k20π[1+3cosθ+52(3cos2θ1)+72(5cos3θ3cosθ)]2sinθdθ=16πk2.\sigma_{e l}=\frac{2 \pi}{4 k^{2}} \int_{0}^{\pi}\left[1+3 \cos \theta+\frac{5}{2}\left(3 \cos ^{2} \theta-1\right)+\frac{7}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right)\right]^{2} \sin \theta d \theta=\frac{16 \pi}{k^{2}} .(11.201)

This is the same expression we obtained in (11.196). Unlike the differential cross section, the total cross section displays no interference pattern because its final expression does not depend on any angle, since the angles were integrated over.

figure (11.9)

Related Answered Questions