Question 9.5: In an experiment, one has a = 9mm, b = 9.2mm, ω= 1,200rpm, h...

In an experiment, one has a = 9mm,   b = 9.2mm,   \omega = 1.200rpm, h = 60mm,   T= 0.0036N m. Compute the error in “measuring” \mu based on the flat plate assumption.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Based on the exact solution

              \mu _{exact}=\frac{(0.0036)(0.0092^{2}-0.009^{2})}{4\pi (0.009)^{2}(0.0092)^{2}(0.06)(125.66)}=0.02017\frac{N  s}{m^{2}} ,

where \omega =(1,200  rpm)(1 \min /60  s)(2 \pi rad/rev)=125.66  rad/s, whereas, based on the approximate solution,

             \mu _{approx}=\frac{T(b-a)}{2\pi a^{3}\omega h}=\frac{0.0036(0.0002)}{2\pi (0.009)^{3}(125.66)(0.06)}=0.02085\frac{N s}{m^{2}}

Hence, our error is only

                           error=\frac{\mu _{approx}-\mu _{exact}}{\mu _{exact}}=\frac{0.02085-0.02017}{0.02017}=3.37\%.

Indeed, from our general formula [Eq. (9.84)],

         error=\frac{\mu _{approx}-\mu _{exact}}{\mu _{exact}}=\frac{2b^{2}-(ab+a^{2})}{ab+a^{2}}.                                (9.84)

 

              error=\frac{2(0.0092)^{2}-\left((0.009)(0.0092)+(0.009)^{2}\right) }{(0.009)(0.0092)+(0.009)^{2}}=3.35\%,

the difference being due to numerical round-off errors.

Related Answered Questions