Question 1.64: In case you’re not persuaded that ∇^2(1/r ) = −4πδ^3(r) (Eq....

In case you’re not persuaded that ∇^2(1/r ) = −4πδ^3(r) (Eq. 1.102 with r’ = 0 for simplicity), try replacing r by \sqrt{r^2+\varepsilon ^2} , and watching what happens as \varepsilon \rightarrow 0.^{16} Specifically, let

∇^2\frac{1}{\eta } = −4\pi \delta ^3(\eta )               (1.102)

D(r, \varepsilon ) ≡ −\frac{1}{4\pi }∇^2\frac{1}{\sqrt{r^2+\varepsilon ^2} } .

^{16} This problem was suggested by Frederick Strauch.

To demonstrate that this goes to \delta ^3(r)   as  \varepsilon \rightarrow 0 :

(a) Show that D (r,\varepsilon )=\left(3\varepsilon ^2/4\pi \right)(r^2+\varepsilon ^2)^{-5/2} .

(b) Check that D (0,\varepsilon )\rightarrow \infty ,  as  \varepsilon \rightarrow 0 .

(c) Check that D (r,\varepsilon )\rightarrow 0, as\varepsilon \rightarrow 0, for all r ≠ 0.

(d) Check that the integral of D(r, ε) over all space is 1.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since the argument is not a function of angle, Eq. 1.73 says

∇^2T=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r} \right) +\frac{1}{r^2\sin \theta } \frac{\partial}{\partial \theta }\left(\sin \theta \frac{\partial T}{\partial \theta } \right)+\frac{1}{r^2\sin ^2\theta } \frac{\partial^2 T}{\partial \phi ^2}           (1.73)

D=-\frac{1}{4\pi }\frac{1}{r^2}\frac{d}{dr} \left[r^2\left(-\frac{1}{2} \right)\frac{2r}{\left(r^2+\varepsilon ^2\right)^{3/2} } \right]=\frac{1}{4\pi r^2}\frac{d}{dr}\left[\frac{r^3}{\left(r^2+\varepsilon ^2\right) ^{3/2} } \right]

=\frac{1}{4\pi r^2}\left[\frac{3r^2}{\left(r^2+\varepsilon ^2\right)^{3/2} }-\frac{3}{2} \frac{r^32r}{\left(r^2+\varepsilon ^2\right)^{5/3} } \right] =\frac{1}{4\pi r^2}\frac{3r^2}{\left(r^2+\varepsilon ^2\right)^{5/2} } \left(r^2 + \varepsilon^ 2 − r^2\right)=\frac{3\varepsilon ^2}{4\pi \left(r^2+\varepsilon ^2\right)^{5/2} } .

(b) Setting r →0:

D(0, \varepsilon ) =\frac{3\varepsilon ^2}{4\pi \varepsilon ^5}=\frac{3}{4\pi \varepsilon ^3} ,

which goes to infinity as ε→0.

(c) From (a) it is clear that D(r, 0) = 0 for r ≠ 0.

\int{} D(r, \varepsilon ) 4\pi r^2 dr = 3\varepsilon^2\int_{0}^{\infty }{} \frac{r^2}{\left(r^2+\varepsilon ^2\right)^{5/2} }dr = 3\varepsilon ^2\left(\frac{1}{3\varepsilon ^2} \right) =1 .

(I looked up the integral.) Note that (b), (c), and (d) are the defining conditions for \delta ^3(r).

Related Answered Questions

(d) ⇒ (a): ∇×F = ∇×(−∇U) = 0 (Eq. 1.44 – curl of g...