Question 11.31: In Equation 11.38 I assumed that the atom is so small (in co...

In Equation 11.38 I assumed that the atom is so small (in comparison to the wavelength of the light) that spatial variations in the field can be ignored. The true electric field would be

E =E_{0} \cos (\omega t) \hat{k}                  (11.38).

E ( r , t)= E _{0} \cos ( k \cdot r -\omega t) .              (11.128)

If the atom is centered at the origin, then k \cdot r \ll 1 over the relevant volume (| k |=2 \pi / \lambda, \text { so } k \cdot r \sim r / \lambda \ll 1) , and that’s why we could afford to drop this term. Suppose we keep the first-order correction:

E ( r , t)= E _{0}[\cos (\omega t)+( k \cdot r ) \sin (\omega t)]               (11.129).

The first term gives rise to the allowed (electric dipole) transitions we considered in the text; the second leads to so-called forbidden (magnetic dipole and electric quadrupole) transitions (higher powers k.r of lead to even more “forbidden” transitions, associated with higher multipole moments).

(a) Obtain the spontaneous emission rate for forbidden transitions (don’t bother to average over polarization and propagation directions, though this should really be done to complete the calculation). Answer:

R_{b \rightarrow a}=\frac{q^{2} \omega^{5}}{\pi \epsilon_{0} \hbar c^{5}}|\langle a|(\hat{n} \cdot r )(\hat{k} \cdot r )| b\rangle|^{2}                     (11.130).

(b) Show that for a one-dimensional oscillator the forbidden transitions go from level n to level n-2 , and the transition rate (suitably averaged over \hat{n} \text { and } \hat{k} \text { ) is }

R=\frac{\hbar q^{2} \omega^{3} n(n-1)}{15 \pi \epsilon_{0} m^{2} c^{5}}        (11.131).

(Note: Here ω is the frequency of the photon, not the oscillator.) Find the ratio of the “forbidden” rate to the “allowed” rate, and comment on the terminology.

(c) Show that the 2 S \rightarrow 1 S transition in hydrogen is not possible even by a “forbidden” transition. (As it turns out, this is true for all the higher multipoles as well; the dominant decay is in fact by two-photon emission, and the lifetime is about a tenth of a second.)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

H^{\prime}=-q E \cdot r =-q\left( E _{0} \cdot r \right)( k \cdot r ) \sin (\omega t) . \quad \text { Write } E _{0}=E_{0} \hat{n}, k =\frac{\omega}{c} \hat{k} .  Then

H^{\prime}=-q \frac{E_{0} \omega}{c}(\hat{n} \cdot r )(\hat{k} \cdot r ) \sin (\omega t) . \quad H_{b a}^{\prime}=-\frac{q E_{0} \omega}{c}\langle b|(\hat{n} \cdot r )(\hat{k} \cdot r )| a\rangle \sin (\omega t) .

This is the analog to Eq. 11.40: H_{b a}^{\prime}=-q E_{0}\langle b|\hat{n} \cdot r | a\rangle \cos \omega t . The rest of the analysis is identical to the dipole case (except that it is \sin (\omega t) \text { instead of } \cos (\omega t) , but this amounts to resetting the clock, and clearly has no effect on the transition rate). We can skip therefore to Eq. 11.63, except for the factor of 1/3, which came from the averaging in Eq. 11.53:

H_{b a}^{\prime}=-\wp E_{0} \cos (\omega t), \quad \text { where } \wp \equiv q\left\langle\psi_{b}|z| \psi_{a}\right\rangle                  (11.40).

A=\frac{\omega_{0}^{3}| s |^{2}}{3 \pi \epsilon_{0} \hbar c^{3}}                     (11.63).

| \wp \cdot \hat{n}|_{ ave }^{2}=\frac{1}{4 \pi} \int| \wp |^{2} \cos ^{2} \theta \sin \theta d \theta d \phi

=\left.\frac{| \rho |^{2}}{4 \pi}\left(-\frac{\cos ^{3} \theta}{3}\right)\right|_{0} ^{\pi}(2 \pi)=\frac{1}{3}| \wp |^{2}                  (11.53).

A=\frac{\omega^{3}}{\pi \epsilon_{0} \hbar c^{3}} \frac{q^{2} \omega^{2}}{c^{2}}|\langle b|(\hat{n} \cdot r )(\hat{k} \cdot r )| a\rangle|^{2}=\frac{q^{2} \omega^{5}}{\pi \epsilon_{0} \hbar c^{5}}|\langle b|(\hat{n} \cdot r )(\hat{k} \cdot r )| a\rangle|^{2} .

(b) Let the oscillator lie along the x direction, so (\hat{n} \cdot r )=\hat{n}_{x} x \text { and } \hat{k} \cdot r =\hat{k}_{x} x \text {. For a transition from } n \text { to } n^{\prime} \text {, } we have

A=\frac{q^{2} \omega^{5}}{\pi \epsilon_{0} \hbar c^{5}}\left(\hat{k}_{x} \hat{n}_{x}\right)^{2}\left|\left\langle n^{\prime}\left|x^{2}\right| n\right\rangle\right|^{2} . From Example 2.5, \left\langle n^{\prime}\left|x^{2}\right| n\right\rangle=\frac{\hbar}{2 m \bar{\omega}}\left\langle n^{\prime}\left|\left(a_{+}^{2}+a_{+} a_{-}+a_{-} a_{+}+a_{-}^{2}\right)\right| n\right\rangle .

where \bar{\omega} is the frequency of the oscillator, not to be confused with ω, the frequency of the electromagnetic wave. Now, for spontaneous emission the final state must be lower in energy, so n^{\prime}<n and hence the only surviving term is a_{-}^{2} . Using Eq. 2.67:

\hat{a}_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}, \quad \hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1}                      (2.67).

\left\langle n^{\prime}\left|x^{2}\right| n\right\rangle=\frac{\hbar}{2 m \bar{\omega}}\left\langle n^{\prime}|\sqrt{n(n-1)}| n-2\right\rangle=\frac{\hbar}{2 m \bar{\omega}} \sqrt{n(n-1)} \delta_{n^{\prime}, n-2} .

Evidently transitions only go from |n\rangle \text { to }|n-2\rangle , and hence

\omega=\frac{E_{n}-E_{n-2}}{\hbar}=\frac{1}{\hbar}\left[\left(n+\frac{1}{2}\right) \hbar \bar{\omega}-\left(n-2+\frac{1}{2}\right) \hbar \bar{\omega}\right]=2 \bar{\omega} .

\left\langle n^{\prime}\left|x^{2}\right| n\right\rangle=\frac{\hbar}{m \omega} \sqrt{n(n-1)} \delta_{n^{\prime}, n-2} ; \quad R_{n \rightarrow n-2}=\frac{q^{2} \omega^{5}}{\pi \epsilon_{0} \hbar c^{5}}\left(\hat{k}_{x} \hat{n}_{x}\right)^{2} \frac{\hbar^{2}}{m^{2} \omega^{2}} n(n-1) .

It remains to calculate the average of \left(\hat{k}_{x} \hat{n}_{x}\right)^{2} . It’s easiest to reorient the oscillator along a direction \hat{r} , making angle θ with the z axis, and let the radiation be incident from the z direction \text { (so } \left.\hat{k}_{x} \rightarrow \hat{k}_{r}=\cos \theta\right) .

Averaging over the two polarizations (\hat{i} \text { and } \hat{j}):\left\langle\hat{n}_{r}^{2}\right\rangle=\frac{1}{2}\left(\hat{i}_{r}^{2}+\hat{j}_{r}^{2}\right)=\frac{1}{2}\left(\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi\right)= \frac{1}{2} \sin ^{2} \theta . Now average overall directions:

\left\langle\hat{k}_{r}^{2} \hat{n}_{r}^{2}\right\rangle=\frac{1}{4 \pi} \int \frac{1}{2} \sin ^{2} \theta \cos ^{2} \theta \sin \theta d \theta d \phi=\frac{1}{8 \pi} 2 \pi \int_{0}^{\pi}\left(1-\cos ^{2} \theta\right) \cos ^{2} \theta \sin \theta d \theta .

=\left.\frac{1}{4}\left[-\frac{\cos ^{3} \theta}{3}+\frac{\cos ^{5} \theta}{5}\right]\right|_{0} ^{\pi}=\frac{1}{4}\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{1}{15} .

R=\frac{1}{15} \frac{q^{2} \hbar \omega^{3}}{\pi \epsilon_{0} m^{2} c^{5}} n(n-1) .  Comparing Eq. 11.70: \frac{R(\text { forbidden })}{R(\text { allowed })}=\frac{2}{5}(n-1) \frac{\hbar \omega}{m c^{2}} .

A=\frac{n q^{2} \omega^{2}}{6 \pi \epsilon_{0} m c^{3}}            (11.70).

For a nonrelativistic system, \hbar \omega \ll m c^{2} ; hence the term forbidden.

(c) If both the initial state and the final state have l = 0, the wave function is independent of angle \left(Y_{0}^{0}=\right. 1 / \sqrt{4 \pi}) , and the angular part of the integral is:

\langle a|(\hat{n} \cdot r )(\hat{k} \cdot r )| b\rangle=\cdots \int(\hat{n} \cdot r )(\hat{k} \cdot r ) \sin \theta d \theta d \phi=\cdots \frac{4 \pi}{3}(\hat{n} \cdot \hat{k}) .  (Eq. 6.95).

But  \hat{n} \cdot \hat{k}=0 , since electromagnetic waves are transverse. So R = 0 in this case, both for allowed and for forbidden transitions.

Related Answered Questions