Question 3.11.9: In Ex. 11–3, the minimum required load rating for 99 percent...

In Ex. 11–3, the minimum required load rating for 99 percent reliability, at  x_D ={L_D}/{L_{10}}= 540 \ , \ is \ C_{10} = 6696 \ lbf = 29.8   kN. From Table 11–2 a 02-40 mm deepgroove ball bearing would satisfy the requirement. If the bore in the application had to be 70 mm or larger (selecting a 02-70 mm deep-groove ball bearing), what is the resulting reliability?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table 11–2,

Table 11–2
Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings
Bore,
mm
OD,
mm
Width,
mm
Fillet
Radius,
mm
Shoulder
Diameter, mm
Load Ratings, kN
Deep Groove Angular Contact
d_S d_H C_{10} C_0 C_{10} C_0
10 30 9 0.6 12.5 27 5.07 2.24 4.94 2.12
12 32 10 0.6 14.5 28 6.89 3.10 7.02 3.05
15 35 11 0.6 17.5 31 7.80 3.55 8.06 3.65
17 470 12 0.6 19.5 34 9.56 4.50 9.95 4.75
20 47 14 1.0 25 41 12.7 6.20 13.3 6.55
25 52 15 1.0 30 47 14.0 6.95 14.8 7.65
30 62 16 1.0 35 55 19.5 10.0 20.3 11.0
35 72 17 1.0 41 65 25.5 13.7 27.0 15.0
40 80 18 1.0 46 72 30.7 16.6 31.9 18.6
45 85 19 1.0 52 77 33.2 18.6 35.8 21.2
50 90 20 1.0 56 82 35.1 19.6 37.7 22.8
55 100 21 1.5 63 90 43.6 25.0 46.2 28.5
60 110 22 1.5 70 99 47.5 28.0 55.9 35.5
65 120 26 1.5 74 109 55.9 34.0 63.7 41.5
70 125 24 1.5 79 114 61.8 37.5 68.9 45.5
75 130 25 1.5 86 119 66.3 40.5 71.5 49.0
80 140 26 1.5 93 127 70.2 45.0 80.6 55.0
85 150 28 2.0 99 136 83.2 53.0 90.4 63.0
90 160 30 2.0 104 146 95.6 62.0 106 73.5
95 170 32 2.0 110 156 108 69.5 121 85.0

for a 02-70 mm deep-groove ball bearing, C_{10} = 61.8 \ \ kN =13 888 lbf. Using Eq. (11–19)

 

R\doteq 1-\left\{\frac{x_D\left(\frac{a_fF_D}{C_{10}} \right)^a-x_0 }{\theta -x_0} \right\}^b \ \ R \ge 0.90 ,

 

recalling from Ex. 11–3 that a_f = 1.2 \ , \ F_D = 413 \ lbf \ , \ x_0 = 0.02 \ , \left(\theta − x_0 \right) = 4.439, and \ b = 1.483 , we can write

R\doteq 1-\left\{\frac{\left[540\left[\frac{1.2\left(413\right) }{13 888} \right]^3-0.02 \right] }{4.439} \right\}^{1.483} =0.0999 963
which, as expected, is much higher than 0.99 from Ex. 11–3.

Related Answered Questions