In Ex. 3.9, we obtained the potential of a spherical shell with surface charge σ(θ) = k cos θ. In Prob. 3.30, you found that the field is pure dipole outside; it’s uniform inside (Eq. 3.86). Show that the limit R → 0 reproduces the delta function term in Eq. 3.106.
V(r, \theta)=\frac{k}{3 \epsilon_{0}} r \cos \theta \quad(r \leq R) (3.86)
E _{\text {dip }}( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3( p \cdot \hat{ r }) \hat{ r }- p ]-\frac{1}{3 \epsilon_{0}} p \delta^{3}( r ) (3.106)