Question 4.14: In extraterrestrial applications (e.g., in the space station...

In extraterrestrial applications (e.g., in the space station), radiation cooling of liquids is made by forming droplets and injecting the droplets into open space (negligible surface-convection heat transfer), and after a short travel period collecting them. This is shown in Figure (a). We use water droplets of diameter D = 2 mm, emissivity \epsilon _{r,1} = 0.8, initial temperature T_{1}(t = 0) = 50^{\circ }C (T_{1} is assumed uniform throughout the droplet, N_{k} < 0.1), and a blackbody surrounding at T_{∞} = 3 K.
(a) Draw the thermal circuit diagram.
(b) Determine the elapsed time required to cool the droplet to T_{1} = 20^{\circ}C.
Use the saturated water thermodynamic properties from Table and at T = 313 K.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The thermal circuit diagram for this problem is given in Figure (b).
(b) From \frac{ 4\sigma _{SB}T_{\infty }^{3}}{(\rho c_{p}V)_{1}R_{r,\sum }}t\equiv \frac{t}{\tau _{1}} =\left(ln\left|\frac{T_{\infty }+T_{1}}{T_{\infty }-T_{1}} \right|+2tan^{-1}\frac{T_{1}}{T_{\infty}} \right) \mid ^{T_{1}}_{T_{1}(t=0)}=\left[ ln\left|\frac{T_{\infty }+T_{1}}{T_{\infty }-T_{1}} \right|-ln\left|\frac{T_{\infty }+T_{1}(t=0)}{T_{\infty }-T_{1}(t=0)} \right|+2tan^{-1}\frac{T_{1}}{T_{\infty }}-2tan^{-1}\frac{T_{1}(t=0)}{T_{\infty }} \right], we have

t=\frac{ R_{r,\sum }(\rho c_{p}V)_{1}}{4\sigma _{SB}T_{\infty }^{3}}\left[ ln\mid\frac{T_{\infty }+T_{1}}{T_{\infty }-T_{1}} \mid-ln\mid\frac{T_{\infty }+T_{1}(t=0)}{T_{\infty }-T_{1}(t=0)} \mid+2tan^{-1}\frac{T_{1}}{T_{\infty }}-2tan^{-1}\frac{T_{1}(t=0)}{T_{\infty }} \right]

where

R_{r,\sum{} }= (R_{r,\epsilon })_{1} + (R_{r,F} )_{1−∞} + (R_{r,\epsilon })_{∞}.

The overall radiation resistance is

R_{r,\sum }=\left(\frac{1-\epsilon _{r}}{A_{r}\epsilon _{r}} \right)_{1}+\frac{1}{A_{r,1}F_{1-\infty }} +\left(\frac{1-\epsilon _{r}}{A_{r}\epsilon _{r}} \right)_{\infty }

 

=\left(\frac{1-\epsilon _{r}}{A_{r}\epsilon _{r}} \right)_{1}+\frac{1}{A_{r,1}} +0

 

=\frac{1}{A_{r,1}\epsilon _{r,1}}

because \epsilon_{r,∞} = 1 and F_{1−∞} = 1 (neglecting the droplet-droplet and droplet-solid surface view factors).
We also note

A_{r,1} = 4\pi R^{2} = \pi D^{2}     , V_{1} = \frac{4}{3} \pi R^{3} = \frac{1}{6} \pi D^{3} .

The thermodynamic properties for water at T_{1} = 313 K are

\rho _{1} = 994.5 kg/m^{3},    c_{p,1} = 4.178 × 10^{3} J/kg-K        Table

We now use the numerical values where

  A_{r,1} = \pi × (2 × 10^{−3}) ^{2} (m)^{2} = 1.257 × 10^{−5} m^{2}

 

V_{1} =\pi \times \frac{(2\times 10^{-3})^{3}(m)^{3}}{6}=4.189\times 10^{-9}m^{3}

 

R_{r,\sum }=\frac{1}{A_{r,1}\epsilon _{r,1}} =\frac{1}{1.257\times 10^{-5}(m^{2})\times 0.8} =9.944\times 10^{4}1/m^{2}

to determine t as

t=\frac{9.944 × 10^{4} (1/m^{2}) × 994.5(kg/m^{3}) × 4.178 × 10^{3} (J/kg-K) × 4.189 × 10^{−9} (m^{3} )}{4 × 5.670 × 10^{−8} (W/m^{2}-K^{4}) × (3)^{3} (K)^{3}}

 

× \left[ln\mid \frac{3(K) + 293.15(K)}{3(K) – 293.15(K)} \mid -ln\mid \frac{3(K) + 323.15(K)}{3(K) – 323.15(K)}\mid +2tan^{-1}\frac{293.15(K)}{3(K)} -2tan^{-1}\frac{323.15(K)}{3(K)} \right]

 

= 9.421 × 10^{7} (s) × (2.0468052 × 10^{−2} − 1.8567762

 

× 10^{−2} + 3.1211260 − 3.1230260)

 

t = 9.421 × 10^{7}(s) × 2.9000000 × 10^{−7} = 27.31 s
23_4
b

Related Answered Questions