Question 13.6: In Fig. 13–30 the sun gear is the input, and it is driven cl...

In Fig. 13–30 the sun gear is the input, and it is driven clockwise at 100 rev/min. The ring gear is held stationary by being fastened to the frame. Find the rev/min and direction of rotation of the arm and gear 4.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let n_F = n_2 = -100 rev/min, and n_L = n_5 = 0. For e, unlock gear 5 and fix the arm. Then, planet gear 4 and ring gear 5 rotate in the same direction, opposite of sun gear 2. Thus, e is negative and

e=-\left(\frac{N_2}{N_4} \right)\left(\frac{N_4}{N_5} \right)=-\left(\frac{20}{30} \right)\left(\frac{30}{80} \right)=-0.25

Substituting this value in Eq. (13–32)

-0.25=\frac{n_L-n_A}{n_F-n_A}                      (13.32)

gives

-0.25=\frac{0-n_A}{(-100)-n_A}

or

n_A = -20 rev/min = 20 rev/min clockwise

To obtain the speed of gear 4, we follow the procedure outlined by Eqs. (b), (c), and (d).

n_{23} = n_2 – n_3                           (b)

n_{53} = n_5 – n_3                           (c)

\frac{n_{53}}{n_{23}} =\frac{n_5-n_3}{n_2-n_3}                           (d)

Thus

n_{43} = n_4 – n_3                      n_{23} = n_2 – n_3

and so

\frac{n_{43}}{n_{23}} =\frac{n_4-n_3}{n_2-n_3}                     (1)

But

\frac{n_{43}}{n_{23}} =-\frac{20}{30}=-\frac{2}{3}                       (2)

Substituting the known values in Eq. (1) gives

-\frac{2}{3}=\frac{n_4-(-20)}{(-100)-(-20)}

Solving gives

n_4=+33\frac{1}{3} rev/min = 33\frac{1}{3} rev/min counter-clockwise

Related Answered Questions