In Figure 13-28, what is the current at each microsecond interval for one complete cycle of the input square wave, V_{s}, After calculating the current at each time, sketch the current waveform.
In Figure 13-28, what is the current at each microsecond interval for one complete cycle of the input square wave, V_{s}, After calculating the current at each time, sketch the current waveform.
When the pulse goes from 0 V to 10 V at t = 0, the final current is
I_{F}= \frac{V_{s}}{R}= \frac{10 \ V}{680 \ \Omega }= 14.7 \ mAFor the increasing current,
i= I_{F}(1-e^{-Rt/L})= I_{F}(1-e^{-t/\tau })At \ 1\mu s : i= 14.7mA(1-e^{-1\mu s/0.824\mu s})= 10.3 \ mA
At \ 2\mu s : i= 14.7mA(1-e^{-2\mu s/0.824\mu s})= 13.4 \ mA
At \ 3\mu s : i= 14.7mA(1-e^{-3\mu s/0.824\mu s})= 14.3 \ mA
At \ 4\mu s : i= 14.7mA(1-e^{-4\mu s/0.824\mu s})= 14.6 \ mA
At \ 5\mu s : i= 14.7mA(1-e^{-5\mu s/0.824\mu s})= 14.7 \ mA
When the pulse goes from 10 V to 0 V at t = 5 μs , the current decreases exponentially. For the decreasing current,
i= I_{i}(e^{-Rt/L})= I_{i}(e^{-t/\tau })The initial current is the value at 5 μs, which is 14.7 mA.
At \ 6\mu s : i= 14.7mA(e^{-1\mu s/0.824\mu s})= 4.37 \ mAAt \ 7\mu s : i= 14.7mA(e^{-2\mu s/0.824\mu s})= 1.30 \ mA
At \ 8\mu s : i= 14.7mA(e^{-3\mu s/0.824\mu s})= 0.38 \ mA
At \ 9\mu s : i= 14.7mA(e^{-4\mu s/0.824\mu s})= 0.11 \ mA
At \ 10 \mu s : i= 14.7mA(e^{-5\mu s/0.824\mu s})= 0.03 \ mA
Figure 13-29 is a graph of these results.