Question 13.154: In order to test the resistance of a chain to impact, the ch...

In order to test the resistance of a chain to impact, the chain is suspended from a 240-lb rigid beam supported by two columns. A rod attached to the last link is then hit by a 60-lb block dropped from a 5-ft height. Determine the initial impulse exerted on the chain and the energy absorbed by the chain, assuming that the block does not rebound from the rod and that the columns supporting the beam are (a) perfectly rigid, (b) equivalent to two perfectly elastic springs.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Velocity of the block just before impact:

\begin{aligned}T_{1} & =0 \quad V_{1}=W h=(60 \mathrm{\ lb})(5 \mathrm{\ ft})=300 \mathrm{\ lb} \cdot \mathrm{ft} \\T_{2} & =\frac{1}{2} m \nu^{2} \quad V_{2}=0 \\T_{1}+V_{1} & =T_{2}+V_{2} \\0+300 & =\frac{1}{2}\left\lgroup\frac{60}{g}\right\rgroup \nu^{2} \\\nu & =\sqrt{\frac{(600)(32.2)}{60}} \\& =17.94 \mathrm{\ ft} / \mathrm{s}\end{aligned}

(a) Rigid columns:

\begin{gathered}+↑ -m \nu+F \Delta t=0 \quad\left\lgroup\frac{60}{g}\right\rgroup(17.94)=F \Delta t \\F \Delta t=33.43 \mathrm{\ lb} \cdot \mathrm{s} \uparrow \text { on the block. } && F \Delta t=33.4 \mathrm{\ lb} \cdot \mathrm{s}\blacktriangleleft\end{gathered}

All of the kinetic energy of the block is absorbed by the chain.

\begin{aligned}T & =\frac{1}{2}\left\lgroup\frac{60}{g}\right\rgroup(17.94)^{2} \\& =300 \mathrm{\ ft} \cdot \mathrm{lb} && E=300 \mathrm{\ ft} \cdot \mathrm{lb}\blacktriangleleft\end{aligned}

(b) Elastic columns:

Momentum of system of block and beam is conserved.

\begin{aligned}& m \nu=(M+m) \nu^{\prime} \\& \nu^{\prime}=\frac{m}{(m+M)} \nu=\frac{60}{300}(17.94 \mathrm{\ ft} / \mathrm{s}) && \nu^{\prime}=3.59 \mathrm{\ ft} / \mathrm{s}\end{aligned}

Referring to figure in part (a),

\begin{aligned}-m \nu+F \Delta t & =-m \nu^{\prime} \\F \Delta t & =m\left(\nu-\nu^{\prime}\right) \\& =\left\lgroup\frac{60}{g}\right\rgroup(17.94-3.59) && F \Delta t=26.7\mathrm{\ lb}⋅\mathrm{s}\blacktriangleleft\\E & =\frac{1}{2} m \nu^{2}-\frac{1}{2} m \nu^{\prime 2}-\frac{1}{2} M \nu^{\prime 2} \\& =\frac{60}{2 g}\left[(17.94)^{2}-(3.59)^{2}\right]-\frac{240}{2 g}(3.59)^{2} &&\quad E=240\mathrm{\ ft}⋅\mathrm{lb}\blacktriangleleft\end{aligned}

13.154.
13.154..

Related Answered Questions