Question 2.42: In Problem 2.21 you analyzed the stationary gaussian free pa...

In Problem 2.21 you analyzed the stationary gaussian free particle wave packet. Now solve the same problem for the traveling gaussian wave packet, starting with the initial wave function

\Psi(x, 0)=A e^{-a x^{2}} e^{i l x} ,

where l is a (real) constant. [Suggestion: In going from Φ (k) to Ψ(x,t) change variables to u ≡ k -l  before doing the integral.] Partial answer:

\Psi(x, t)=\left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{1}{\gamma} e^{-a(x-\hbar l t / m)^{2} / \gamma^{2}} e^{i l(x-\hbar l t / 2 m)} .

where \gamma \equiv \sqrt{1+2 i a \hbar t / m} , as before. Notice that Ψ(x,t) has the structure of a gaussian “envelope” modulating a traveling sinusoidal wave. What is the speed of the envelope? What is the speed of the traveling wave?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Normalization is the same as before: A=\left(\frac{2 a}{\pi}\right)^{1 / 4} .

(b) Equation 2.104 says

\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \Psi(x, 0) e^{-i k x} d x .        (2.104).

\phi(k)=\frac{1}{\sqrt{2 \pi}}\left(\frac{2 a}{\pi}\right)^{1 / 4} \int_{-\infty}^{\infty} e^{-a x^{2}} e^{i l x} e^{-i k x} d x . [same as before, only k → k – l]= \frac{1}{(2 \pi a)^{1 / 4}} e^{-(k-l)^{2} / 4 a} .

\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \frac{1}{(2 \pi a)^{1 / 4}} \int_{-\infty}^{\infty} e^{-(k-l)^{2} / 4 a} e^{i\left(k x-\hbar k^{2} t / 2 m\right)} d k .

Let u ≡ k – l , so k = u + l and dk = du:

\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \frac{1}{(2 \pi a)^{1 / 4}} \int_{-\infty}^{\infty} e^{-u^{2} / 4 a} e^{i\left[u x+l x-(\hbar t / 2 m)\left(u^{2}+2 u l+l^{2}\right)\right]} d u .

=\frac{1}{\sqrt{2 \pi}} \frac{1}{(2 \pi a)^{1 / 4}} e^{i l\left(x-\frac{\hbar l t}{2 m}\right)} \int_{-\infty}^{\infty} e^{-u^{2}\left(\frac{1}{4 a}+i \frac{\hbar t}{2 m}\right)+i u\left(x-\frac{\hbar l t}{m}\right)} d u .

Using the hint in Problem 2.21, the integral becomes

\frac{1}{\sqrt{\frac{1}{4 a}+i \frac{\hbar t}{2 m}}} e^{\left(x-\frac{\hbar l t}{m}\right)^{2} / 4\left(\frac{1}{4 a}+i \frac{\hbar t}{2 m}\right)} \int_{-\infty}^{\infty} e^{-y^{2}} d y=\frac{2 \sqrt{a}}{\gamma} e^{-a\left(x-\frac{\hbar l t}{m}\right)^{2} / \gamma^{2}} \sqrt{\pi} .

so

Ψ  (x,t) = \left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{1}{\gamma} e^{-a\left(x-\frac{\hbar l t}{m}\right)^{2} / \gamma^{2}} e^{i l\left(x-\frac{\hbar l t}{2 m}\right)} .

The gaussian envelope (the first exponential) travels at speed \hbar l / m the sinusoidal wave (the second exponential) travels at speed \hbar l /2 m .

(c)

|\Psi(x, t)|^{2}=\sqrt{\frac{2 a}{\pi}} \frac{1}{|\gamma|^{2}} e^{a\left(x-\frac{\hbar l t}{m}\right)^{2}\left[\frac{1}{\gamma^{2}}+\frac{1}{\left(\gamma^{*}\right)^{2}}\right]} .

The term in square brackets simplifies:

\left[\frac{1}{\gamma^{2}}+\frac{1}{\left(\gamma^{*}\right)^{2}}\right]=\frac{1}{|\gamma|^{4}}\left[\left(\gamma^{*}\right)^{2}+\gamma^{2}\right]=\frac{1}{|\gamma|^{4}}\left(1-\frac{2 i \hbar t}{m}+1+\frac{2 i \hbar t}{m}\right)=\frac{2}{|\gamma|^{4}} .

|\gamma|^{2}=\sqrt{\left(1+\frac{2 i a \hbar t}{m}\right)\left(1-\frac{2 i a \hbar t}{m}\right)}=\sqrt{1+\theta^{2}} .

where (as before) \theta \equiv 2 \hbar a t / m . So

|\Psi(x, t)|^{2}=\sqrt{\frac{2 a}{\pi}} \frac{1}{\sqrt{1+\theta^{2}}} e^{2 a\left(x-\frac{h t}{m}\right)^{2} /\left(1+\theta^{2}\right)}= \sqrt{\frac{2}{\pi}} w e^{-2 w^{2}\left(x-\frac{\hbar l t}{m}\right)^{2}} .

where (as before) w \equiv \sqrt{a /\left(1+\theta^{2}\right)} The result is the same as in Problem 2.21, except that x \rightarrow\left(x-\frac{\hbar l}{m} t\right) so |\Psi|^{2} has the same ( flattening gaussian) shape – only this time the center moves at constant speed v=\hbar l / m .

(d)

\langle x\rangle=\int_{-\infty}^{\infty} x|\Psi(x, t)|^{2} d x     Let <br /> y \equiv x-v t, \text { so } x=y+v t .

=\int_{-\infty}^{\infty}(y+v t) \sqrt{\frac{2}{\pi}} w e^{-2 w^{2} y^{2}} d y=v t =\frac{\hbar l}{m} t .

(The first integral is trivially zero; the second is 1 by normalization.)

\langle p\rangle=m \frac{d\langle x\rangle}{d t} = \hbar l .

\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty}(y+v t)^{2} \sqrt{\frac{2}{\pi}} w e^{-2 w^{2} y^{2}} d y=\frac{1}{4 w^{2}}+0+(v t)^{2}=\frac{1}{4 w^{2}}+\left(\frac{\hbar l t}{m}\right)^{2} .

(The first integral is same as in Problem 2.21):

\left\langle p^{2}\right\rangle=-\hbar^{2} \int_{-\infty}^{\infty} \Psi^{*} \frac{\partial^{2} \Psi}{\partial x^{2}} d x ; \quad \frac{\partial \Psi}{\partial x}=\left[-\frac{2 a}{\gamma^{2}}\left(x-\frac{\hbar l t}{m}\right)+i l\right] \Psi ,

\frac{\partial^{2} \Psi}{\partial x^{2}}=-\frac{2 a}{\gamma^{2}} \Psi+\left[-\frac{2 a}{\gamma^{2}}\left(x-\frac{\hbar l t}{m}\right)+i l\right]^{2} \Psi=\left[A x^{2}+B x+C\right] \Psi ,

where

A \equiv\left(\frac{2 a}{\gamma^{2}}\right)^{2}, \quad B \equiv-\left(\frac{2 a}{\gamma^{2}}\right)^{2} \frac{2 \hbar l t}{m}-\frac{4 i a l}{\gamma^{2}}=-\frac{4 i a l}{\gamma^{4}} .

C \equiv-\frac{2 a}{\gamma^{2}}+\left(\frac{2 a}{\gamma^{2}}\right)^{2}\left(\frac{\hbar l t}{m}\right)^{2}+\left(\frac{4 i a l}{\gamma^{2}}\right)\left(\frac{\hbar l t}{m}\right)-l^{2}=-\frac{1}{\gamma^{4}}\left(2 a \gamma^{2}+l^{2}\right) .

\left\langle p^{2}\right\rangle=-\hbar^{2} \int_{-\infty}^{\infty} \Psi^{*}\left[A x^{2}+B x+C\right] \Psi d x=-\hbar^{2}\left[A\left\langle x^{2}\right\rangle+B\langle x\rangle+C\right] .

=-\frac{\hbar^{2}}{\gamma^{4}}\left[4 a^{2}\left(\frac{1}{4 w^{2}}+\left(\frac{\hbar l t}{m}\right)^{2}\right)-4 i a l\left(\frac{\hbar l t}{m}\right)-\left(2 a \gamma^{2}+l^{2}\right)\right] .

=-\frac{\hbar^{2}}{\gamma^{4}}\left\{\left[a+a\left(\frac{2 \hbar a t}{m}\right)^{2}-2 a-\frac{4 i a^{2} \hbar t}{m}\right]+l^{2}\left[-1-\frac{4 i a \hbar t}{m}+4\left(\frac{\hbar a t}{m}\right)^{2}\right]\right\} .

=-\frac{\hbar^{2}}{\gamma^{4}}\left(-a \gamma^{4}-l^{2} \gamma^{4}\right)= \hbar^{2}\left(a+l^{2}\right) .

\sigma_{x}^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=\frac{1}{4 w^{2}}+\left(\frac{\hbar l t}{m}\right)^{2}-\left(\frac{\hbar l t}{m}\right)^{2}=\frac{1}{4 w^{2}} \Rightarrow \sigma_{x}=\frac{1}{2 w} ;

\sigma_{p}^{2}=\left\langle p^{2}\right\rangle-\langle p\rangle^{2}=\hbar^{2} a+\hbar^{2} l^{2}-\hbar^{2} l^{2}=\hbar^{2} a , so \sigma_{p}=\hbar \sqrt{a} .

(e) σ_x and σ_p are same as before, so the uncertainty principle still holds.

Related Answered Questions