Question 6.3: In rapid cooling of plastic sheets formed by molding, water ...

In rapid cooling of plastic sheets formed by molding, water is used as the coolant. Consider a thin sheet with a square cross section L × L, with water flowing over one side of it with a far-field velocity u_{f,∞} parallel to the sheet. The surface temperature is T_{s} and the far-field temperature is T_{f,∞}. This is depicted in Figure (a).
(a) Draw the thermal circuit diagram.
(b) Determine the rate of surface-convection cooling.

(c) Determine the thermal boundary-layer thickness at the tail edge.
(d) Determine the average surface-convection resistance \left\langle R_{ku}\right\rangle _{L}.

L = 20 cm,     T_{s} = 95^{\circ }C,      T_{f,∞} = 20^{\circ }C   , and   (i) u_{f,∞} = 0.5 m/s   , (ii) u_{f,∞} = 5 m/s.
Determine the thermophysical properties from Table and atT = 330 K. We will continue to use this example, but with different fluid flow arrangements and phase change, in the following sections to allow for a comparative examination of the surface-convection heat transfer methods.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The thermal circuit diagram is shown in Figure (b). The energy equation is the surface energy equation , which reduces to

Q \mid_{A}= Q_{s} + \left\langle Q_{ku}\right\rangle _{L} = 0

(b) The surface-convection heat transfer rate is given by A_{ku}=Lw,       \left\langle Q_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L} } =A_{ku}\left\langle Nu\right\rangle _{L}\frac{k_{f}}{L} (T_{s}-T_{f,\infty }), i.e.,

\left\langle Q_{ku}\right\rangle _{L} =A_{ku}\left\langle Nu\right\rangle _{L}\frac{k_{f}}{L} (T_{s}-T_{f,\infty })

where A_{ku} = L^{2}.
The Nusselt number is related to the Reynolds number Re_{L}. The Reynolds number is given by Re_{L}\equiv \frac{F_{u}}{F_{\mu }} \equiv \frac{u_{f,\infty }L}{v_{f}}       ,v_{f}=(\mu /\rho )_{f} as

Re_{L}=\frac{u_{f,\infty }L}{v_{f}}

For water we use Table, and find that for T = 330 K

ν_{f} = 505 × 10^{−9}m^{2}/s          Table
k_{f} = 0.648 × W/m-K           Table
Pr = 3.22          Table

Then

(i) Re_{L}=\frac{0.5(m/s) × 0.2(m)}{505 × 10^{−9} (m^{2}/s)} = 1.980 × 10^{5} < Re_{L,t} = 5 × 10^{5}       laminar-flow regime

(ii) Re_{L}=\frac{5(m/s) × 0.2(m)}{505 × 10^{−9} (m^{2}/s)} = 1.980 × 10^{6} > Re_{L,t} = 5 × 10^{5}   turbulent-flow regime

Based on this magnitude for Re_{L}, we use \left\langle Nu\right\rangle _{L}=0.332Pr^{1/3}\left(\frac{u_{f,\infty }}{v_{f}} \right) ^{1/2}\int_{0}^{L}{x^{-1/2}dx}=2Nu_{L} =0.664Re_{L}^{1/2}Pr^{1/3}=\frac{L}{A_{ku}\left\langle R_{ku}\right\rangle _{L}k_{f}} ,Re_{L}\leq Re_{L,t}=5\times 10^{5} and\left\langle\overline{Nu} \right\rangle _{L}\equiv \left\langle Nu\right\rangle _{L}=(0.037Re^{4/5}_{L}-871)Pr^{1/3}    for       5\times 10^{5}\lt Re_{L}\lt 10^{8},    and     0.6\lt Pr\lt 60 for \left\langle Nu\right\rangle _{L} i.e.,

(i) \left\langle Nu\right\rangle _{L}= 0.664Re^{1/2} _{L} Pr^{1/3} = 0.664(1.980 × 10^{5} )^{ 1/2} (3.22)^{1/3}

= 436.1

(ii) \left\langle Nu\right\rangle _{L}= (0.037Re^{4/5}_{L} − 871)Pr^{1/3}

=[(0.037(1.980 × 10^{6} )^{ 4/5} − 871)](3.22)^{1/3}

= 4.666 × 10^{3}                  average laminar-turbulent Nusselt number.

Now returning to   \left\langle Q_{ku}\right\rangle _{L} , we have

(i)  \left\langle Q_{ku}\right\rangle _{L} = (0.2)^{2} (m^{2}) × 436.1 × 10^{3} ×\frac{0.648(W/m-K)}{0.2(m)} × (95 − 20)(K)

 

= 4.239 × 10^{3} W

(ii) \left\langle Q_{ku}\right\rangle _{L} =(0.2)^{2} (m^{2}) × 4.666 × 10^{3} ×\frac{0.648(W/m-K)}{0.2(m)}× (95 − 20)(K)

 

= 4.535 × 10^{4} W

(c) The thermal boundary-layer thickness is given by \frac{\delta _{v}}{\delta _{\alpha }} =Pr^{1/3}    ,\delta _{v}=5.0\left(\frac{v_{f}L}{u_{f,\infty }} \right) ^{1/2}=5.0LRe_{L}^{-1/2},    \delta _{\alpha }=5.0\left(\frac{v_{f}L}{u_{f,\infty }} \right) ^{1/2}\left(\frac{\alpha _{f}}{v_{f}} \right) ^{1/3} and \overline{\delta } _{v}\equiv \delta _{v}0.37LRe_{L}^{-1/5}=0.37\left(\frac{v_{f}}{u_{f,\infty }} \right) ^{1/5}L^{4/5},      \frac{\overline{\delta }_{v} }{\overline{\delta }_{\alpha } } \simeq 1 as

(i)  \delta _{\alpha }=5\left(\frac{v_{f}L}{u_{f,\infty }} \right) ^{1/2}Pr^{-1/3}

 

=5\left[\frac{505 × 10^{−9} (m/s) × 0.2(m)}{0.5(m/s)} \right] ^{1/2}(3.22)^{-1/3}

 

= 1.522 × 10^{−3} m = 1.522 mm

(ii)  \delta _{\alpha }=\delta _{v }=0.37\left(\frac{v_{f}}{u_{f,\infty }} \right) ^{1/5}L^{4/5}

 

=0.37\left[\frac{505 × 10^{−9}(m^{2}/s)}{5(m/s)} \right] ^{1/5}(0,2)^{4/5}(m)^{4/5}= 4.073 × 10^{−3} m

= 2.758 mm.

(d) The average surface-convection resistance \left\langle R_{ku}\right\rangle _{L} is found from A_{ku}=Lw,       \left\langle Q_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L} } =A_{ku}\left\langle Nu\right\rangle _{L}\frac{k_{f}}{L} (T_{s}-T_{f,\infty }), i.e.,

(i) \left\langle R_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle Q_{ku}\right\rangle_{L} } =\frac{(95 − 20)(^{\circ }C)}{4.239 × 10^{3} (W)} = 0.01769^{\circ }C/W 

 

A_{ku}\left\langle R_{ku}\right\rangle _{L} = (0.2)^{2} (m^{2}) × 0.01769(^{\circ}C/W) = 7.077 × 10^{−4\circ}C/(W/m^{2})

(ii)  \left\langle R_{ku}\right\rangle _{L}=\frac{T_{s}-T_{f,\infty }}{\left\langle Q_{ku}\right\rangle_{L} } =\frac{(95 − 20)(^{\circ }C)}{4.535 × 10^{4} (W)} = 0.001654^{\circ }C/W

 

A_{ku}\left\langle R_{ku}\right\rangle _{L}= (0.2)^{2} (m^{2}) × 0.001654(^{\circ}C/W) = 6.615 × 10^{−5\circ}C/(W/m^{2})

Figure (b) shows the average heat flux vector \left\langle q_{ku}\right\rangle _{L}, which is perpendicular to the surface (between Ts is uniform over the surface). The thermal circuit diagram is also shown

b
23_1
23_2
23_4

Related Answered Questions