Question 11.27: In Section 11.2.1 we calculated the energy per unit time rad...

In Section 11.2.1 we calculated the energy per unit time radiated by a (nonrelativistic) point charge—the Larmor formula. In the same spirit:

(a) Calculate the momentum per unit time radiated. \left[\text { Answer: } \frac{\mu_{0} q^{2}}{6 \pi c^{3}} a^{2} v .\right]

(b) Calculate the angular momentum per unit time radiated.

\left[\text { Answer: } \frac{\mu_{0} q^{2}}{6 \pi c}( v \times a )\right]
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The momentum flux density is (minus) the Maxwell stress tensor (Section 8.2.3),

T_{i j}=\epsilon_{0}\left(E_{i} E_{j}-\frac{1}{2} \delta_{i j} E^{2}\right)+\frac{1}{\mu_{0}}\left(B_{i} B_{j}-\frac{1}{2} \delta_{i j} B^{2}\right),

(Eq. 8.17) so the momentum radiated per unit (retarded) time is

T_{i j} \equiv \epsilon_{0}\left(E_{i} E_{j}-\frac{1}{2} \delta_{i j} E^{2}\right)+\frac{1}{\mu_{0}}\left(B_{i} B_{j}-\frac{1}{2} \delta_{i j} B^{2}\right)                                (8.17)

\frac{d p }{d t_{r}}=-\oint \frac{1}{\left(\partial t_{r} / \partial t\right)} \overleftrightarrow{T} \cdot d A,

where (Eq. 10.78)

\frac{\partial t_{r}}{\partial t}=\frac{ᴫ c}{ ᴫ \cdot u }                       (10.78)

\frac{\partial t_{r}}{\partial t}=\frac{ᴫ c}{ ᴫ \cdot u }=\left(1-\frac{\hat{ᴫ } \cdot v }{c}\right)^{-1}.

(This factor is 1, when v = 0; it can be ignored in deriving the Larmor formula, but it does contribute to the momentum radiated.) The integration is over a large spherical surface centered on the charge:

d A =ᴫ^{2} \sin \theta d \theta d \phi \hat{ᴫ }

As in the case of the power radiated, only the radiation fields contribute (Eq. 11.66):

E _{ rad }=\frac{q}{4 \pi \epsilon_{0}} \frac{ᴫ}{(ᴫ \cdot u )^{3}}[ ᴫ \times( u \times a )]                                    (11.66)

E _{ rad }=\frac{q}{4 \pi \epsilon_{0}} \frac{ ᴫ }{( ᴫ \cdot u )^{3}}[ ᴫ \times( u \times a )], \quad B _{ rad }=\frac{1}{c} \hat{ᴫ } \times E _{ rad }.

Thus

\overleftrightarrow{T} \cdot d A =\epsilon_{0}\left[ E ( E \cdot d A )-\frac{1}{2} E^{2} d A \right]+\frac{1}{\mu_{0}}\left[ B ( B \cdot d A )-\frac{1}{2} B^{2} d A \right]=-\frac{1}{2}\left[\epsilon_{0} E^{2}+\frac{1}{\mu_{0}} B^{2}\right] d A =-\epsilon_{0} E^{2} d A

(note that B · dA = 0, and, for radiation fields, E \cdot d A =0,\left(1 / \mu_{0}\right) B^{2}=\left(1 / \mu_{0} c^{2}\right)(\hat{ ᴫ } \times E ) \cdot(\hat{ ᴫ } \times E )=\left.\epsilon_{0} \hat{ᴫ } \cdot[ E \times(\hat{ ᴫ } \times E )]=\epsilon_{0} \hat{ᴫ } \cdot\left[\hat{ ᴫ } E^{2}- E (\hat{ ᴫ } \cdot E )\right]=\epsilon_{0} E^{2}\right). So

\frac{d p }{d t_{r}}=\epsilon_{0} \oint\left(\frac{ ᴫ \cdot u }{ᴫ c }\right) E^{2} d A =\frac{q^{2}}{16 \pi^{2} \epsilon_{0} c} \oint \frac{ᴫ}{( ᴫ \cdot u )^{5}}[ ᴫ \times( u \times a )]^{2} d A.

We expand the integrand to first order in \beta \equiv v / c: u =c \hat{ ᴫ }- v =c(\hat{ ᴫ}- \beta ), ᴫ \cdot u =c ᴫ (1-\hat{ ᴫ } \cdot \beta ),

\frac{1}{( ᴫ \cdot u )^{5}}=\frac{1}{ᴫ{ }^{5} c^{5}}[1+5(\hat{ ᴫ } \cdot \beta )].

ᴫ \times( u \times a )= u ( ᴫ \cdot a )- a ( ᴫ \cdot u )=ᴫ c(\hat{ ᴫ }- \beta )(\hat{ᴫ } \cdot a )- a ᴫ c(1-\hat{ ᴫ } \cdot \beta )=ᴫ c[\hat{ ᴫ}(\hat{ ᴫ } \cdot a )- a + a (\hat{ ᴫ } \cdot \beta )- \beta (\hat{ᴫ} \cdot a )].

[ ᴫ \times( u \times a )]^{2}=ᴫ^{2} c^{2}\left[(\hat{ᴫ } \cdot a )^{2}-2(\hat{ᴫ } \cdot a )^{2}+a^{2}+2(\hat{ ᴫ } \cdot a )^{2}(\hat{ ᴫ } \cdot \beta )-2(\hat{ ᴫ } \cdot \beta )(\hat{ᴫ } \cdot a )^{2}-2 a^{2}(\hat{ᴫ } \cdot \beta )\right.

 

+2( a \cdot \beta )(\hat{ᴫ } \cdot a )]=ᴫ^{2} c^{2}\left[a^{2}-(\hat{ᴫ } \cdot a )^{2}-2 a^{2}(\hat{ᴫ } \cdot \beta )+2(\hat{ ᴫ } \cdot a )( a \cdot \beta )\right].

\frac{ᴫ}{( ᴫ \cdot u )^{5}} \quad[ r \times( u \times a )]^{2}=\frac{1}{ᴫ^{2} c^{3}}[1+5(\hat{ ᴫ } \cdot \beta )]\left[a^{2}-(\hat{ ᴫ} \cdot a )^{2}-2 a^{2}(\hat{ᴫ } \cdot \beta )+2(\hat{ ᴫ } \cdot a )( a \cdot \beta )\right]

 

=\frac{1}{ᴫ^{2} c^{3}}\left[a^{2}-(\hat{ ᴫ } \cdot a )^{2}-2 a^{2}(\hat{ ᴫ } \cdot \beta )+2(\hat{ᴫ } \cdot a )( a \cdot \beta )+5(\hat{ ᴫ } \cdot \beta ) a^{2}-5(\hat{ᴫ} \cdot \beta )(\hat{ ᴫ } \cdot a )^{2}\right]

 

=\frac{1}{ᴫ^{2} c^{3}}\left[a^{2}-(\hat{ ᴫ } \cdot a )^{2}+3 a^{2}(\hat{ ᴫ } \cdot \beta )+2(\hat{ᴫ } \cdot a )( a \cdot \beta )-5(\hat{ ᴫ } \cdot \beta )(\hat{ ᴫ } \cdot a )^{2}\right]

=\frac{1}{ᴫ^{2} c^{3}}\left[(\hat{ᴫ} \times a )^{2}+\hat{ ᴫ } \cdot\left[3 a^{2} \beta +2( a \cdot \beta ) a \right]-5(\hat{ ᴫ } \cdot \beta )(\hat{ ᴫ } \cdot a )^{2}\right].

To integrate the first term we set the polar axis along a, so (\hat{ ᴫ } \times a )^{2}=a^{2} \sin ^{2} \theta \text {, while } \hat{ ᴫ }=\sin \theta \cos \phi \hat{ x }+\sin \theta \sin \phi \hat{ y }+\cos \theta \hat{ z }. The \phi integral kills the \hat{ x } \text { and } \hat{ y } components, leaving

\oint \frac{1}{ᴫ^{2}}(\hat{ ᴫ } \times a )^{2} d A =2 \pi a^{2} \hat{ z } \int_{0}^{\pi} \sin ^{3} \theta \cos \theta d \theta=0.

[Note that if v = 0 then  d p / d t_{r}= 0—a particle instantaneously at rest radiates no momentum. That’s why we had to carry the expansion to first order in \beta , whereas in deriving the Larmor formula we could afford to set v=0.] The second term is of the form (\hat{ᴫ} \cdot g ) , for a constant vector g. Setting the polar axis along g, so \hat{ ᴫ} \cdot g =g \cos \theta , the x and y components again vanish, leaving 

\oint \frac{1}{ᴫ^{2}}(\hat{ᴫ} \cdot g ) d A =2 \pi g \hat{ z } \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta=\frac{4 \pi}{3} g.

The last term involves (\hat{ ᴫ} \cdot \beta )(\hat{ ᴫ} \cdot a )^{2} ; this time we orient the polar axis along a and let v lie in the xz plane:

\beta =\beta_{x} \hat{ x }+\beta_{z} \hat{ z }, \text { so }(\hat{ ᴫ } \cdot \beta )=\beta_{x} \sin \theta \cos \phi+\beta_{z} \cos \theta . Then

\oint \frac{1}{ᴫ^{2}}(\hat{ ᴫ} \cdot \beta )(\hat{ ᴫ } \cdot a )^{2} d A =a^{2} \int\left(\beta_{x} \sin \theta \cos \phi+\beta_{z} \cos \theta\right) \cos ^{2} \theta[\sin \theta \cos \phi \hat{ x }+\sin \theta \sin \phi \hat{ y }+\cos \theta \hat{ z }] \sin \theta d \theta d \phi

 

=a^{2}\left(\beta_{x} \hat{ x } \int \sin ^{3} \theta \cos ^{2} \theta \cos ^{2} \phi d \theta d \phi+\beta_{z} \hat{ z } \int \cos ^{4} \theta \sin \theta d \theta d \phi\right)=\frac{4 \pi}{15} a^{2}\left(\beta_{x} \hat{ x }+3 \beta_{z} \hat{ z }\right)=\frac{4 \pi}{15}\left(a^{2} \beta +2( a \cdot \beta ) a \right).

Putting all this together,

\frac{d p }{d t_{r}}=\frac{q^{2}}{16 \pi^{2} \epsilon_{0}} \frac{1}{c^{4}}\left\{\frac{4 \pi}{3}\left[2 a ( a \cdot \beta )+3 a^{2} \beta \right]-5 \frac{4 \pi}{15}\left[a^{2} \beta +2( a \cdot \beta ) a \right]\right\}=\frac{\mu_{0} q^{2}}{6 \pi c^{3}} a^{2} v.

The angular momentum radiated is

\frac{d L }{d t_{r}}=-\oint \frac{1}{\left(\partial t_{r} / \partial t\right)}( ᴫ \times \overleftrightarrow{T}) \cdot d A.

Because of the “extra”in the integrand, it seems at first glance that the radiation fields alone will produce a result that grows without limit (as ᴫ → ∞); however, the coe!cient of this term is precisely zero:  (ᴫ \times \overleftrightarrow{T})d A =-\epsilon_{0} E^{2}( ᴫ \times d A )=0 (for radiation fields). The finite contribution comes from the cross terms, in which one field (\operatorname{in} \overleftrightarrow{T}) is a radiation field and the other a Coulomb field \left( E _{\text {coul }} \equiv \frac{q}{4 \pi \epsilon_{0}} \frac{ᴫ}{( ᴫ \cdot u )^{3}}\left(c^{2}-v^{2}\right) u \right) :

T_{i j}=\epsilon_{0}\left(E_{i}^{(r)} E_{j}^{(c)}+E_{i}^{(c)} E_{j}^{(r)}-\delta_{i j} E ^{(r)} \cdot E ^{(c)}\right)+\frac{1}{\mu_{0}}\left(B_{i}^{(r)} B_{j}^{(c)}+B_{i}^{(c)} B_{j}^{(r)}-\delta_{i j} B ^{(r)} \cdot B ^{(c)}\right).

This time

\overleftrightarrow{T} \cdot d A =\epsilon_{0}\left[ E ^{(r)}\left( E ^{(c)} \cdot d A \right)-\left( E ^{(r)} \cdot E ^{(c)}\right) d A \right]-\frac{1}{\mu_{0}}\left( B ^{(r)} \cdot B ^{(c)}\right) d A,

so

( ᴫ \times \overleftrightarrow{T}) \cdot d A =\epsilon_{0}\left( ᴫ \times E ^{(r)}\right)\left( E ^{(c)} \cdot d A \right).

Thus

\frac{d L }{d t_{r}}=-\frac{q^{2} c}{16 \pi^{2} \epsilon_{0} \gamma^{2}} \oint \frac{ᴫ}{( ᴫ \cdot u )^{5}}\{ᴫ \times[ ᴫ \times( u \times a )]\} u \cdot d A , \text { where } \gamma \equiv \frac{1}{\sqrt{1-(v / c)^{2}}}.

Now, \{ᴫ \times[ ᴫ \times( u \times a )]\}= ᴫ [ ᴫ \cdot( u \times a )]-( u \times a ) ᴫ^{2} , and ( u \times a )=c(\hat{ ᴫ}- \beta ) \times a =c[(\hat{ᴫ } \times a )-( \beta \times a )],

\hat{ ᴫ } \cdot( u \times a )=-c \hat{ ᴫ } \cdot( \beta \times a ), \text { so }\{ ᴫ \times[ ᴫ \times( u \times a )]\}=- ᴫ ^{2} c\{(\hat{ ᴫ } \times a )-( \beta \times a )+\hat{ ᴫ }[\hat{ ᴫ } \cdot( \beta \times a )]\}.

Meanwhile u \cdot d A =( u \cdot \hat{ᴫ }) ᴫ^{2} d \Omega \text {, where } d \Omega \equiv \sin \theta d \theta d \phi \text {. Expanding to first order in } \beta,

\frac{d L }{d t_{r}}=-\frac{\mu_{0} q^{2} c^{3}}{16 \pi^{2}} \oint \frac{ᴫ}{( ᴫ \cdot u )^{5}}\left(-ᴫ^{2} c\right)\{(\hat{ ᴫ } \times a )-( \beta \times a )+\hat{ᴫ}[\hat{ ᴫ } \cdot( \beta \times a )]\} ᴫ( ᴫ \cdot u ) d \Omega

 

=\frac{\mu_{0} q^{2}}{16 \pi^{2}} \int[1+4(\hat{ᴫ} \cdot \beta )]\{(\hat{ ᴫ } \times a )-( \beta \times a )+\hat{ ᴫ }[\hat{ᴫ } \cdot( \beta \times a )]\} d \Omega

 

\left.=\frac{\mu_{0} q^{2}}{16 \pi^{2}} \int\{(\hat{ ᴫ } \times a )-( \beta \times a )+\hat{ᴫ }[\hat{ ᴫ } \cdot( \beta \times a )]+4(\hat{ ᴫ } \cdot \beta )(\hat{ ᴫ } \times a )]\right\} d \Omega

The first integral is

– a \times \int \hat{ ᴫ } \sin \theta d \theta d \phi=- a \times \int(\sin \theta \cos \phi \hat{ x }+\sin \theta \sin \phi \hat{ y }+\cos \theta \hat{ z }) \sin \theta d \theta d \phi= 0,

the second is

-( \beta \times a ) \int \sin \theta d \theta d \phi=-4 \pi( \beta \times a ),

for the third we set the polar axis along g \equiv \beta \times a and get

g \int \hat{ᴫ} \cos \theta \sin \theta d \theta d \phi=2 \pi g \hat{ z } \int \cos ^{2} \theta \sin \theta d \theta=\frac{4 \pi}{3} g =\frac{4 \pi}{3}( \beta \times a ),

and for the last we put the polar axis along a and let \beta =\beta_{x} \hat{ x }+\beta_{z} \hat{ z } lie in the xz plane:

4 a \int\left(\beta_{x} \sin \theta \cos \phi+\beta_{z} \cos \theta\right) \sin \theta(-\hat{ \phi }) \sin \theta d \theta d \phi

 

=4 a \int\left(\beta_{x} \sin \theta \cos \phi+\beta_{z} \cos \theta\right)(\sin \phi \hat{ x }-\cos \phi \hat{ y }) \sin ^{2} \theta d \theta d \phi

 

=-4 a \beta_{x} \hat{ y } \int \cos ^{2} \phi \sin ^{3} \theta d \theta d \phi=-\frac{16 \pi}{3} a \beta_{x} \hat{ y }=\frac{16 \pi}{3}( \beta \times a ).

Putting this all together, we conclude

\frac{d L }{d t_{r}}=\frac{\mu_{0} q^{2}}{16 \pi^{2}}\left[-4 \pi( \beta \times a )+\frac{4 \pi}{3}( \beta \times a )+\frac{16 \pi}{3}( \beta \times a )\right]=\frac{\mu_{0} q^{2}}{6 \pi c}( v \times a )

Related Answered Questions