Question 13.2: In the BJT tuned amplifier circuit shown in Fig. 13.32(a), t...

In the BJT tuned amplifier circuit shown in Fig. 13.32(a), the bandwidth is 5 kHz and the voltage gain has a maximum value at 250 kHz, when the tuning capacitor is adjusted to 470 pF. Assume the coil Q as 75. Determine the (a) coil inductance, (b) output impedance at resonant frequency, (c) internal resistance ro of the BJT, and (d) load resistance if the bandwidth increases by 1 kHz.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The small-signal model of the amplifier is shown in Fig. 13.32(b).

The dynamic junction resistance, r_{\pi } = \frac{v_{be} }{i_{b} } , which is one of the small signal parameters of the transistor. The coil has a small resistance r, Q_{coil} = 75 and an LC circuit has Q = ∞. The coil and C in parallel can be replaced by its equivalent circuit as in Fig. 13.32(c). Hence, the value r_{eq} is found below:

\frac{\bar{I} _{cap} }{\bar{I} }\left|_{atf= 0}= \frac{r+j\omega L}{(r+j\omega L)+1/j\omega C} \right|_{atf= f_{0} }

\approx \frac{\omega _{O}L }{r};        as r << \omega _{O}L

Q_{circuit} = \omega _{O} r_{eq}C

Q_{coil} = Q_{circuit}

Q^{2}_{coil} = Q_{coil} × Q_{circuit} =\frac{\omega _{O}L }{r}× \omega _{O}r_{eq}C =\frac{r_{eq}}{r}

(a)                                    f_{O} = 250  kHz

BW = 5 kHz

Q_{circuit} = \frac{f_{O} }{BW} = \frac{250\times 10^{3} }{5\times 10^{3} } = 50

f_{O}= \frac{1}{2\pi \sqrt{LC} }

Hence,                             L= \frac{1}{(2\pi f_{O})^{2} C}

= \frac{1}{(2\pi \times 250\times 10^{3} )^{2}\times 470\times 10^{-12} }= 4.06   mH

(b) Using the circuit equivalent established as above, the circuit is redrawn and shown in Fig. 13.32(d).

R = r_{o} || r_{eq}

Q_{circuit} = \frac{R}{\omega ^{'}_{O} L} = 50;           Here \omega _{O} = 2p × 250 × 10^{3}

R = 50 × 2\pi × 250 × 10^{3} × 4.06 × 10^{–3} = 318.71  k \Omega

(c)                              Q_{coil} = \frac{\omega _{O} L}{r}

75= \frac{2\pi \times 250\times 10^{3}\times 4.06\times 10^{-3}}{r}

Therefore,                      r = 85 Ω

Substituting the values

r_{eq} = Q^{2}_{coil} × r = (75)^{2} × 85 = 478.12  k \Omega

Here,                               R = r_{o} || r_{eq}

i.e.                                    318.71=\frac{r_{o}\times 478.12 }{r_{o} +478.12}

Upon solving, we get

r_{o} = 955.91  k \Omega

(d) R_{L} is now connected across V_{o} and so the bandwidth increases by 1 kHz.

BW (new) = (5 + 1) kHz = 6 kHz

Q_{circuit} =\frac{250}{6} = 41.66

R_{eq} = R || R_{L} = Q_{circuit }× \omega _{o} L = 41.66 × 2\pi × 250 × 10^{3} × 4.06 × 10^{–3}

= 265.55

265.55= \frac{318.77\times R_{L} }{318.77+ R_{L}}

i.e.                                     R_{L} = 1592  k \Omega

13.322
13.32c
13.32d

Related Answered Questions