Question 7.6: In the case of pure fluid statics, the fluid is at rest and ...

In the case of pure fluid statics, the fluid is at rest and thus the velocity and acceleration of the fluid are both zero (note: actually, we only need a=0 for statics by Newton’s second law). Show that in this case, the only possible stress in the fluid is a hydrostatic pressure. Moreover, show that if a cube of a static fluid is oriented with respect to an (o; x, y, z) coordinate system, then the only stresses with respect to an (o; x^{\prime}, y^{\prime}, z^{\prime}) coordinate system are still hydrostatic.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

If \nu =0, then \nu_{x}=\nu_ {y}=\nu_{z}=0 and all components of [D] are zero. From Eq. (7.66), therefore,

\sigma _{xx}=-p+2\mu \frac{\partial\nu _{x}}{\partial x},     \sigma _{xy}=\mu \left(\frac{\partial\nu _{y}}{\partial x} +\frac{\partial\nu _{x}}{\partial y} \right)=\sigma _{yx},

 

\sigma _{yy}=-p+2\mu \frac{\partial\nu _{y}}{\partial y},     \sigma _{xz}=\mu \left(\frac{\partial\nu _{x}}{\partial z} +\frac{\partial\nu _{z}}{\partial x} \right)=\sigma _{zx},

 

\sigma _{zz}=-p+2\mu \frac{\partial\nu _{z}}{\partial z},     \sigma _{yz}=\mu \left(\frac{\partial\nu _{y}}{\partial z} +\frac{\partial\nu _{z}}{\partial y} \right)=\sigma _{zy},                            (7.66)

 

\sigma _{xx}=-p,    \sigma _{yy}=-p,     \sigma _{zz}=-p,

 

\sigma _{xy}=0=\sigma _{yx},    \sigma _{xz}=0=\sigma _{zx},       \sigma _{yz}=0=\sigma _{zy}

and the stress is hydrostatic (i.e., the normal stresses at a point equal the negative of the pressure at that point). Moreover, if we consider a rotation about the z axis (i.e., in the x–y plane), then

                  \sigma ^{\prime }_{xx}=\sigma _{xx}\cos ^{2}\alpha +2\sigma _{xy}\cos \alpha \sin \alpha +\sigma _{yy}\sin ^{2}\alpha ,

 

                  \sigma ^{\prime }_{xy}=(\sigma _{yy}-\sigma _{xx})\cos \alpha \sin \alpha +\sigma _{xy}(\cos ^{2}\alpha -\sin ^{2}\alpha ),

 

               \sigma ^{\prime }_{yy}=\sigma _{xx}\sin ^{2}\alpha +2\sigma _{xy}\cos \alpha \sin \alpha +\sigma _{yy}\cos ^{2}\alpha

from Eqs. (2.13), (2.17), and (2.21). Hence, in our case,

\sigma ^{\prime }_{xx}=\sigma _{xx}\cos ^{2}\alpha +2\sigma _{xy}\sin \alpha \cos \alpha +\sigma _{yy}\sin ^{2}\alpha ,                            (2.13)

 

\sigma ^{\prime }_{xy}=2\sin \alpha \cos \alpha \left(\frac{\sigma _{yy}-\sigma _{xx}}{2} \right)+(\cos ^{2}\alpha -\sin ^{2}\alpha )\sigma _{xy}.        (2.17)

 

\sigma ^{\prime }_{yy}=\sigma _{xx}\sin ^{2}\alpha -2\sigma _{xy}\sin \alpha \cos \alpha +_{yy}\cos ^{2}\alpha .          (2.21)

 

\sigma ^{\prime }_{xx}=-p\cos ^{2}\alpha +0-p\sin ^{2}\alpha =-p,

 

\sigma ^{\prime }_{xy}=(-p+p)\cos \alpha \sin \alpha +0=0,

 

\sigma ^{\prime }_{yy}=-p\sin ^{2}\alpha -0-p\cos ^{2}\alpha =-p

for all α, and the stress is indeed hydrostatic in pure fluid statics regardless of the
coordinate system (Fig. 7.10). Although discussed in detail in Chap. 8, note that if μ is negligible, then

\sigma _{xx}=-p,           \sigma _{yy}=-p,                \sigma _{zz}=-p  (7.67)

and all shear stresses are zero. A fluid that can only support a pressure, not a shear stress, is said to be inviscid. Whereas no fluid has zero viscosity, the assumption of negligible viscosity (like that of a rigid member in a truss in statics even though no material is truly rigid) has proven useful in many areas of fluid mechanics, particularly in aerospace applications.

1

Related Answered Questions