If \nu =0, then \nu_{x}=\nu_ {y}=\nu_{z}=0 and all components of [D] are zero. From Eq. (7.66), therefore,
\sigma _{xx}=-p+2\mu \frac{\partial\nu _{x}}{\partial x}, \sigma _{xy}=\mu \left(\frac{\partial\nu _{y}}{\partial x} +\frac{\partial\nu _{x}}{\partial y} \right)=\sigma _{yx},
\sigma _{yy}=-p+2\mu \frac{\partial\nu _{y}}{\partial y}, \sigma _{xz}=\mu \left(\frac{\partial\nu _{x}}{\partial z} +\frac{\partial\nu _{z}}{\partial x} \right)=\sigma _{zx},
\sigma _{zz}=-p+2\mu \frac{\partial\nu _{z}}{\partial z}, \sigma _{yz}=\mu \left(\frac{\partial\nu _{y}}{\partial z} +\frac{\partial\nu _{z}}{\partial y} \right)=\sigma _{zy}, (7.66)
\sigma _{xx}=-p, \sigma _{yy}=-p, \sigma _{zz}=-p,
\sigma _{xy}=0=\sigma _{yx}, \sigma _{xz}=0=\sigma _{zx}, \sigma _{yz}=0=\sigma _{zy}
and the stress is hydrostatic (i.e., the normal stresses at a point equal the negative of the pressure at that point). Moreover, if we consider a rotation about the z axis (i.e., in the x–y plane), then
\sigma ^{\prime }_{xx}=\sigma _{xx}\cos ^{2}\alpha +2\sigma _{xy}\cos \alpha \sin \alpha +\sigma _{yy}\sin ^{2}\alpha ,
\sigma ^{\prime }_{xy}=(\sigma _{yy}-\sigma _{xx})\cos \alpha \sin \alpha +\sigma _{xy}(\cos ^{2}\alpha -\sin ^{2}\alpha ),
\sigma ^{\prime }_{yy}=\sigma _{xx}\sin ^{2}\alpha +2\sigma _{xy}\cos \alpha \sin \alpha +\sigma _{yy}\cos ^{2}\alpha
from Eqs. (2.13), (2.17), and (2.21). Hence, in our case,
\sigma ^{\prime }_{xx}=\sigma _{xx}\cos ^{2}\alpha +2\sigma _{xy}\sin \alpha \cos \alpha +\sigma _{yy}\sin ^{2}\alpha , (2.13)
\sigma ^{\prime }_{xy}=2\sin \alpha \cos \alpha \left(\frac{\sigma _{yy}-\sigma _{xx}}{2} \right)+(\cos ^{2}\alpha -\sin ^{2}\alpha )\sigma _{xy}. (2.17)
\sigma ^{\prime }_{yy}=\sigma _{xx}\sin ^{2}\alpha -2\sigma _{xy}\sin \alpha \cos \alpha +_{yy}\cos ^{2}\alpha . (2.21)
\sigma ^{\prime }_{xx}=-p\cos ^{2}\alpha +0-p\sin ^{2}\alpha =-p,
\sigma ^{\prime }_{xy}=(-p+p)\cos \alpha \sin \alpha +0=0,
\sigma ^{\prime }_{yy}=-p\sin ^{2}\alpha -0-p\cos ^{2}\alpha =-p
for all α, and the stress is indeed hydrostatic in pure fluid statics regardless of the
coordinate system (Fig. 7.10). Although discussed in detail in Chap. 8, note that if μ is negligible, then
\sigma _{xx}=-p, \sigma _{yy}=-p, \sigma _{zz}=-p (7.67)
and all shear stresses are zero. A fluid that can only support a pressure, not a shear stress, is said to be inviscid. Whereas no fluid has zero viscosity, the assumption of negligible viscosity (like that of a rigid member in a truss in statics even though no material is truly rigid) has proven useful in many areas of fluid mechanics, particularly in aerospace applications.