Question 3.74: In the figure, shaft AB tr mits power to shaft CD through a ...

In the figure, shaft  A B tr mits power to shaft  C D through a set of bevel gears contacting at point  E . The contact force at  E on the gear of shaft  C D is determined to be  \left(\mathbf{F}_{E}\right)_{C D}=-92.8 \mathbf{i}-362.8 \mathbf{j}+ 808.0 \mathrm{k} \mathrm{lbf} . For shaft  C D:(a) draw a free-body diagram and determine the reactions at  C and  D .

assuming simple supports (assume also that bearing  C carries the thrust load),  (b) draw the shearforce and bending-moment diagrams,  (c) for the critical stress element, determine the torsional shear stress, the bending stress, and the axial stress, and  (d) for the critical stress element, determine the principal stresses and the maximum shear stress.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

 

(a)

\begin{aligned}&\left(\Sigma M_{D}\right)_{z}=6.13 C_{x}-3.8(92.8)-3.88(362.8)=0 \\&C_{x}=287.2 \text { lbf } \text {   } \\&\left(\Sigma M_{C}\right)_{z}=6.13 D_{x}+2.33(92.8)-3.88(362.8)=0 \\&D_{x}=194.4 \text { lbf } \text {   } \\&\left(\Sigma M_{D}\right)_{x}=0 \Rightarrow C_{z}=\frac{3.8}{6.13}(808)=500.9 \mathrm{lbf} \\&\left(\Sigma M_{C}\right)_{x}=0 \Rightarrow D_{z}=\frac{2.33}{6.13}(808)=307.1 \mathrm{lbf}\end{aligned}

 

\text { (b) For } D Q C \text {, let } x^{\prime}, y^{\prime}, z^{\prime} \text { correspond to the original }-y, x, z \text { axes. }

 

(c) The critical stress element is just to the right of  Q where the bending moment in both planes is maximum, and where the torsional and axial loads exist.

\begin{aligned}&T=808(3.88)=3135 \mathrm{lbf} \cdot \mathrm{in} \\&M=\sqrt{669.2^{2}+1167^{2}}=1345 \mathrm{lbf} \cdot \mathrm{in} \\&\tau=\frac{16 T}{\pi d^{3}}=\frac{16(3135)}{\pi\left(1.13^{3}\right)}=11070 \text { psi } \quad \text {   } \\&\sigma_{b}=\pm \frac{32 M}{\pi d^{3}}=\pm \frac{32(1345)}{\pi\left(1.13^{3}\right)}=\pm 9495 \mathrm{psi} \quad \text {   } \\&\sigma_{a}=-\frac{F}{A}=-\frac{362.8}{(\pi / 4)\left(1.13^{2}\right)}=-362 \mathrm{psi} \quad \text {   }\end{aligned}

 

(d) The critical stress element will be where the bending stress and axial stress are both in compression.

\begin{aligned}&\sigma_{\max }=-9495-362=-9857 \mathrm{psi} \\&\tau_{\max }=\sqrt{\left(\frac{-9857}{2}\right)^{2}+11070^{2}}=12118 \mathrm{psi}=12.1 \mathrm{kpsi} \quad \text {  . } \\&\sigma_{1}, \sigma_{2}=\frac{-9857}{2} \pm \sqrt{\left(\frac{-9857}{2}\right)^{2}+11070^{2}} \\&\sigma_{1}=7189 \mathrm{psi}=7.19 \mathrm{kpsi} \quad \text {  . } \\&\sigma_{2}=-17046 \mathrm{psi}=-17.0 \mathrm{kpsi} \quad \text {   }\end{aligned}
SNAG-21100309113300
SNAG-21100910164100

Related Answered Questions