Question 9.5.3: Interrelating the Two Activity Coefficients in a Binary Mixt...

Interrelating the Two Activity Coefficients in a Binary Mixture

The activity coefficient for species 1 in a binary mixture can be represented by

\ln \gamma_{1}=a x_{2}^{2}+b x_{2}^{3}+c x_{2}^{4}

where a, b, and c are concentration-independent parameters. What is the expression for \ln \gamma_{2} in terms of these same parameters?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For a binary mixture at constant temperature and pressure we have, from Eq. 8.2-20 or 9.3-17,

 

x_{1}\left(\frac{\partial \bar{G}_{1}}{\partial x_{1}}\right)_{T, P}+x_{2}\left(\frac{\partial \bar{G}_{2}}{\partial x_{1}}\right)_{T, P}=0 (8.2-20)

 

x_{1}\left(\frac{\partial \ln \gamma_{1}}{\partial x_{1}}\right)_{T, P}+x_{2}\left(\frac{\partial \ln \gamma_{2}}{\partial x_{1}}\right)_{T, P}=0 (9.3-17)

 

x_{1} \frac{\partial \ln \gamma_{1}}{\partial x_{2}}+x_{2} \frac{\partial \ln \gamma_{2}}{\partial x_{2}}=0

 

Since x_{1}=1-x_{2} \text { and } \ln \gamma_{1}=a x_{2}^{2}+b x_{2}^{3}+c x_{2}^{4}, we have

 

\begin{aligned}\frac{\partial \ln \gamma_{2}}{\partial x_{2}} &=-\frac{x_{1}}{x_{2}} \frac{\partial \ln \gamma_{1}}{\partial x_{2}} \\&=-\frac{\left(1-x_{2}\right)}{x_{2}}\left(2 a x_{2}+3 b x_{2}^{2}+4 c x_{2}^{3}\right) \\&=-2 a+(2 a-3 b) x_{2}+(3 b-4 c) x_{2}^{2}+4 c x_{2}^{3}\end{aligned}

 

Now, by definition, \gamma_{2}\left(x_{2}=1\right)=1, \text { and } \ln \gamma_{2}\left(x_{2}=1\right)=0. Therefore,

 

\begin{aligned}\int_{x_{2}=1}^{x_{2}} \frac{\partial \ln \gamma_{2}}{\partial x_{2}} d x_{2}=& \ln \gamma_{2}\left(x_{2}\right)-\ln \gamma_{2}\left(x_{2}=1\right)=\ln \gamma_{2}\left(x_{2}\right) \\=& \int_{x_{2}=1}^{x_{2}}\left[-2 a+(2 a-3 b) x_{2}+(3 b-4 c) x_{2}^{2}+4 c x_{2}^{3}\right] d x_{2} \\=&-2 a\left(x_{2}-1\right)+\frac{(2 a-3 b)}{2}\left(x_{2}^{2}-1\right)+\frac{(3 b-4 c)}{3}\left(x_{2}^{3}-1\right) \\&+\frac{4 c}{4}\left(x_{2}^{4}-1\right)\end{aligned}

 

Again using x_{1}+x_{2}=1, \text { or } x_{2}=1-x_{1}, yields

 

\begin{aligned}\ln \gamma_{2}=&-2 a\left(1-x_{1}-1\right) \\&+\frac{1}{2}(2 a-3 b)\left(1-2 x_{1}+x_{1}^{2}-1\right) \\&+\frac{1}{3}(3 b-4 c)\left(1-3 x_{1}+3 x_{1}^{2}-x_{1}^{3}-1\right) \\&+c\left(1-4 x_{1}+6 x_{1}^{2}-4 x_{1}^{3}+x_{1}^{4}-1\right) \\\ln \gamma_{2}=&\left(a+\frac{3 b}{2}+2 c\right) x_{1}^{2}-\left(b+\frac{8}{3} c\right) x_{1}^{3}+c x_{1}^{4}\end{aligned}

Related Answered Questions