Question 1.2.2: Is the vector [3 1] in Span {[1 2],[-1 1]}?

Is the vector \left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] in Span \left\{\left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] ,\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] \right\} ?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using the definition of span, the vector \left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] is in the spanned set if it can be written as a linear combination of the vectors in the spanning set. That is, we need to determine whether there exists c_{1},c_{2} \in \mathbb{R} such that

\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] =c_{1}\left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] +c_{2}\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ]

Performing operations on vectors on the right-hand side gives

\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] =\left [ \begin{matrix} c_{1} -c_{2} \\ 2c_{1}+c_{2} \end{matrix} \right ]

Since vectors are equal if and only if their corresponding entries are equal, we get that this vector equation implies

3=c_{1}-c_{2} \\ 1=2c_{1}+c_{2}

Adding the equations gives 4=3c_{1} and so c_{1}=\frac{4}{3} .

Substituting this into either equation gives c_{2}=-\frac{5}{3} . Hence, we have that

\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] =\frac{4}{3}\left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] -\frac{5}{3}\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ]

 

Thus, by definition, \left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] \in span \left\{\left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] ,\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] \right\} .

Related Answered Questions