Is the vector \left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] in Span \left\{\left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] ,\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] \right\} ?
Is the vector \left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] in Span \left\{\left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] ,\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] \right\} ?
Using the definition of span, the vector \left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] is in the spanned set if it can be written as a linear combination of the vectors in the spanning set. That is, we need to determine whether there exists c_{1},c_{2} \in \mathbb{R} such that
\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] =c_{1}\left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] +c_{2}\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ]Performing operations on vectors on the right-hand side gives
\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] =\left [ \begin{matrix} c_{1} -c_{2} \\ 2c_{1}+c_{2} \end{matrix} \right ]Since vectors are equal if and only if their corresponding entries are equal, we get that this vector equation implies
3=c_{1}-c_{2} \\ 1=2c_{1}+c_{2}Adding the equations gives 4=3c_{1} and so c_{1}=\frac{4}{3} .
Substituting this into either equation gives c_{2}=-\frac{5}{3} . Hence, we have that
\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] =\frac{4}{3}\left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] -\frac{5}{3}\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ]
Thus, by definition, \left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] \in span \left\{\left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] ,\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] \right\} .