Question 10.21: It is required to design a helical torsion spring for a wind...

It is required to design a helical torsion spring for a window shade. The spring is made of patented and cold-drawn steel wire of Grade-4. The yield strength of the material is 60% of the ultimate tensile strength and the factor of safety is 2. From space considerations, the mean coil diameter is kept as 18 mm. The maximum bending moment acting on the spring is 250 N-mm.
The modulus of elasticity of the spring material is 207 000 N/mm². The stiffness of the spring should be 3 N-mm/rad. Determine the wire diameter and the number of active coils.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } \quad S_{y t}=0.6 S_{u t} \quad(f s)=2 \quad D=18 mm .

M_{b}=250 N – mm \quad E=207000 N / mm ^{2} .

k = 3 N-mm/rad
Step I Wire diameter
The wire diameter is calculated by the trial and error method.
Trial 1 d = 1.4 mm
From Table 10.1,

Table 10.1 Mechanical properties of patented and cold-drawn steel wires

Minimum tensile strength (N/mm²) Wire diameter
d (mm)
Gr.4 Gr.3 Gr.2 Gr.1
2660 2460 2060 1720 0.3
2620 2430 2040 1700 0.4
2580 2390 2010 1670 0.5
2550 2360 1990 1650 0.6
2530 2320 1970 1630 0.7
2480 2280 1950 1610 0.8
2440 2250 1920 1590 0.9
2400 2240 1900 1570 1.0
2340 2170 1860 1540 1.2
2290 2090 1820 1500 1.4
2250 2080 1780 14700 1.6
2190 2030 1750 1440 1.8
2160 1990 1720 1420 2.0
2050 1890 1640 1370 2.5
1980 1830 1570 1320 3.0
1890 1750 1510 1270 3.6
1840 1700 1480 1250 4.0
1800 1660 1440 1230 4.5
1750 1600 1390 1190 5.0
1670 1530 1320 1130 6.0
1610 1460 1260 1090 7.0
1540 1400 1220 1050 8.0

S_{u t}=2290 N / mm ^{2} .

\text { The permissible stress }\left(\sigma_{t}\right) \text { is given by, }

\sigma_{t}=\frac{S_{y t}}{(f s)}=\frac{0.60 S_{u t}}{(f s)}=\frac{0.60(2290)}{(2)}=687 N / mm ^{2} .

C=\frac{D}{d}=\frac{18}{1.4}=12.857 .

K_{i}=\frac{4 C^{2}-C-1}{4 C(C-1)}=\frac{4(12.857)^{2}-(12.857)-1}{4(12.857)(12.857-1)} .

= 1.0616.

\sigma_{b}=K_{i}\left(\frac{32 M_{b}}{\pi d^{3}}\right)=(1.0616)\left(\frac{32(250)}{\pi(1.4)^{3}}\right) .

=985.18 N / mm ^{2} .

\text { Therefore, }\left(\sigma_{b}\right)>\left(\sigma_{t}\right) .

The design is not safe.
Trial 2 d = 1.6 mm
From Table 10.1,

S_{u t}=2250 N / mm ^{2} .

\text { The permissible stress }\left(\sigma_{t}\right) \text { is given by, }

\sigma_{t}=\frac{S_{y t}}{(f s)}=\frac{0.60 S_{u t}}{(f s)}=\frac{0.60(2250)}{(2)} .

=675 N / mm ^{2} .

C=\frac{D}{d}=\frac{18}{1.6}=11.25 .

K_{i}=\frac{4 C^{2}-C-1}{4 C(C-1)}=\frac{4(11.25)^{2}-(11.25)-1}{4(11.25)(11.25-1)} .

=1.071.

\sigma_{b}=K_{i}\left(\frac{32 M_{b}}{\pi d^{3}}\right)=(1.071)\left(\frac{32(250)}{\pi(1.6)^{3}}\right) .

=665.84 N / mm ^{2} .

\text { Therefore, }\left(\sigma_{b}\right)<\left(\sigma_{t}\right) .

The design is satisfactory and the wire diameter should be 1.6 mm.

Step II Number of active coils
From. (10.31),

k=\frac{E d^{4}}{64 D N}                 (10.31).

N=\frac{E d^{4}}{64 D k}=\frac{(207000)(1.6)^{4}}{64(18)(3)}=392.53 .

or               N = 393 coils.

Related Answered Questions