\text { Given } \quad S_{y t}=0.6 S_{u t} \quad(f s)=2 \quad D=18 mm .
M_{b}=250 N – mm \quad E=207000 N / mm ^{2} .
k = 3 N-mm/rad
Step I Wire diameter
The wire diameter is calculated by the trial and error method.
Trial 1 d = 1.4 mm
From Table 10.1,
Table 10.1 Mechanical properties of patented and cold-drawn steel wires
Minimum tensile strength (N/mm²) |
Wire diameter
d (mm) |
Gr.4 |
Gr.3 |
Gr.2 |
Gr.1 |
2660 |
2460 |
2060 |
1720 |
0.3 |
2620 |
2430 |
2040 |
1700 |
0.4 |
2580 |
2390 |
2010 |
1670 |
0.5 |
2550 |
2360 |
1990 |
1650 |
0.6 |
2530 |
2320 |
1970 |
1630 |
0.7 |
2480 |
2280 |
1950 |
1610 |
0.8 |
2440 |
2250 |
1920 |
1590 |
0.9 |
2400 |
2240 |
1900 |
1570 |
1.0 |
2340 |
2170 |
1860 |
1540 |
1.2 |
2290 |
2090 |
1820 |
1500 |
1.4 |
2250 |
2080 |
1780 |
14700 |
1.6 |
2190 |
2030 |
1750 |
1440 |
1.8 |
2160 |
1990 |
1720 |
1420 |
2.0 |
2050 |
1890 |
1640 |
1370 |
2.5 |
1980 |
1830 |
1570 |
1320 |
3.0 |
1890 |
1750 |
1510 |
1270 |
3.6 |
1840 |
1700 |
1480 |
1250 |
4.0 |
1800 |
1660 |
1440 |
1230 |
4.5 |
1750 |
1600 |
1390 |
1190 |
5.0 |
1670 |
1530 |
1320 |
1130 |
6.0 |
1610 |
1460 |
1260 |
1090 |
7.0 |
1540 |
1400 |
1220 |
1050 |
8.0 |
S_{u t}=2290 N / mm ^{2} .
\text { The permissible stress }\left(\sigma_{t}\right) \text { is given by, }
\sigma_{t}=\frac{S_{y t}}{(f s)}=\frac{0.60 S_{u t}}{(f s)}=\frac{0.60(2290)}{(2)}=687 N / mm ^{2} .
C=\frac{D}{d}=\frac{18}{1.4}=12.857 .
K_{i}=\frac{4 C^{2}-C-1}{4 C(C-1)}=\frac{4(12.857)^{2}-(12.857)-1}{4(12.857)(12.857-1)} .
= 1.0616.
\sigma_{b}=K_{i}\left(\frac{32 M_{b}}{\pi d^{3}}\right)=(1.0616)\left(\frac{32(250)}{\pi(1.4)^{3}}\right) .
=985.18 N / mm ^{2} .
\text { Therefore, }\left(\sigma_{b}\right)>\left(\sigma_{t}\right) .
The design is not safe.
Trial 2 d = 1.6 mm
From Table 10.1,
S_{u t}=2250 N / mm ^{2} .
\text { The permissible stress }\left(\sigma_{t}\right) \text { is given by, }
\sigma_{t}=\frac{S_{y t}}{(f s)}=\frac{0.60 S_{u t}}{(f s)}=\frac{0.60(2250)}{(2)} .
=675 N / mm ^{2} .
C=\frac{D}{d}=\frac{18}{1.6}=11.25 .
K_{i}=\frac{4 C^{2}-C-1}{4 C(C-1)}=\frac{4(11.25)^{2}-(11.25)-1}{4(11.25)(11.25-1)} .
=1.071.
\sigma_{b}=K_{i}\left(\frac{32 M_{b}}{\pi d^{3}}\right)=(1.071)\left(\frac{32(250)}{\pi(1.6)^{3}}\right) .
=665.84 N / mm ^{2} .
\text { Therefore, }\left(\sigma_{b}\right)<\left(\sigma_{t}\right) .
The design is satisfactory and the wire diameter should be 1.6 mm.
Step II Number of active coils
From. (10.31),
k=\frac{E d^{4}}{64 D N} (10.31).
N=\frac{E d^{4}}{64 D k}=\frac{(207000)(1.6)^{4}}{64(18)(3)}=392.53 .
or N = 393 coils.