Legendre polynomials. Use the Gram–Schmidt procedure (Problem A.4) to orthonormalize the functions 1 , x , x² , and x³ on the interval -1 ≤ x ≤ 1 . You may recognize the results—they are (apart from normalization)39 Legendre polynomials (Problem 2.64 and Table 4.1).
Table 4.1: The first few Legendre polynomials, P_{\ell}(x) : (a) functional form, (b) graph | |
![]() |
P_{0}=1 |
P_{1}=x | |
P_{2}=\frac{1}{2}\left(3 x^{2}-1\right) | |
P_{3}=\frac{1}{2}\left(5 x^{3}-3 x\right) | |
P_{4}=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) | |
P_{5}=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) | |
(b) | (a) |