Question 3.6.6: Let A = [1 0 1 1 0 3 -1 1 -1]. Write A and A^-1 as products ...

Let A = \left [ \begin{matrix} 1 & 0 & 1 \\ 1 & 0 & 3 \\ -1 & 1 & -1 \end{matrix} \right ]. Write A and A^{-1} as products of elementary matrices.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Row reducing A to RREF gives

\left [ \begin{matrix} 1 & 0 & 1 \\ 1 & 0 & 3 \\ -1 & 1 & -1 \end{matrix} \right ] \begin{matrix} \\ R_{2} – R_{1} \\ R_{3} + R_{1} \end{matrix} \sim \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{matrix} \right ] \ \ \ \ \ \ \ \frac{1}{2} R_{2} \sim

\left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right ] \begin{matrix} \\ \\ R_{2} \updownarrow R_{3} \end{matrix}  \sim  \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \begin{matrix} R_{1} – R_{3} \\ \\ \end{matrix}  \sim  \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]

Hence,

E_{1} = \left [ \begin{matrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] E_{2} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{matrix} \right ] E_{3} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] E_{4} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right ] E_{5} = \left [ \begin{matrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]

and E_{5} E_{4} E_{3} E_{2} E_{1} A = I. Therefore,

A^{-1} = E_{5} E_{4} E_{3} E_{2} E_{1} = \left [ \begin{matrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]

and

A = E_{1} ^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1}  = \left [ \begin{matrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]  

Related Answered Questions

Taking dot products of the rows of the first matri...
Row reducing and keeping track of our row operatio...
By row reducing, we get \left [ \begin{matr...