Let A = \left [ \begin{matrix} 1 & 0 & 1 \\ 1 & 0 & 3 \\ -1 & 1 & -1 \end{matrix} \right ]. Write A and A^{-1} as products of elementary matrices.
Let A = \left [ \begin{matrix} 1 & 0 & 1 \\ 1 & 0 & 3 \\ -1 & 1 & -1 \end{matrix} \right ]. Write A and A^{-1} as products of elementary matrices.
Row reducing A to RREF gives
\left [ \begin{matrix} 1 & 0 & 1 \\ 1 & 0 & 3 \\ -1 & 1 & -1 \end{matrix} \right ] \begin{matrix} \\ R_{2} – R_{1} \\ R_{3} + R_{1} \end{matrix} \sim \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{matrix} \right ] \ \ \ \ \ \ \ \frac{1}{2} R_{2} \sim
\left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right ] \begin{matrix} \\ \\ R_{2} \updownarrow R_{3} \end{matrix} \sim \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \begin{matrix} R_{1} – R_{3} \\ \\ \end{matrix} \sim \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]
Hence,
E_{1} = \left [ \begin{matrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] E_{2} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{matrix} \right ] E_{3} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] E_{4} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right ] E_{5} = \left [ \begin{matrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]and E_{5} E_{4} E_{3} E_{2} E_{1} A = I. Therefore,
A^{-1} = E_{5} E_{4} E_{3} E_{2} E_{1} = \left [ \begin{matrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]and
A = E_{1} ^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} = \left [ \begin{matrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]