Let A = \left [ \begin{matrix} 1 & 1 & 1 \\ -1 & -2 & 3 \\ -2 & -4 & 6 \end{matrix} \right ] and \vec{b} = \left [ \begin{matrix} 1 \\ 6 \\ 12 \end{matrix} \right ] . Use an LU-decomposition to solve A\vec{x} = \vec{b}.
Let A = \left [ \begin{matrix} 1 & 1 & 1 \\ -1 & -2 & 3 \\ -2 & -4 & 6 \end{matrix} \right ] and \vec{b} = \left [ \begin{matrix} 1 \\ 6 \\ 12 \end{matrix} \right ] . Use an LU-decomposition to solve A\vec{x} = \vec{b}.
We first find an LU-decomposition for A. Row reducing gives
\left [ \begin{matrix} 1 & 1 & 1 \\ -1 & -2 & 3 \\ -2 & -4 & 6 \end{matrix} \right ] \begin{matrix} \\ R_{2} + R_{1} \\R_{3} + 2 R_{1} \end{matrix} \sim \left [ \begin{matrix} 1 & 1 & 1 \\ 0 & -1 & 4 \\ 0 & -2 & 8 \end{matrix} \right ] \begin{matrix} \\ \\R_{3} – 2R_{2} \end{matrix} \sim \left [ \begin{matrix} 1 & 1 & 1 \\ 0 & -1 & 4 \\ 0 & 0 & 0 \end{matrix} \right ] = U
From our elementary row operations, we find that L = \left [ \begin{matrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 2 & 1 \end{matrix} \right ] .
We let \vec{y} = U\vec{x} and solve L\vec{y} = \vec{b}. This gives
y_{1} = 1
-y_{1} + y_{2} = 6
-2y_{1} + 2y_{2} + y_{3} = 12
Hence, y_{1} = 1, y_{2} = 6 + 1 = 7, and y_{3} = 12 + 2 – 14 = 0. Next we solve U\vec{x} = \left [ \begin{matrix} 1 \\ 7 \\ 0 \end{matrix} \right ] .
x_{1} + x_{2} + x_{3} = 1
-x_{2} + 4x_{3} = 7
0x_{3} = 0
This gives x_{3} = t \in \mathbb{R}, x_{2} = -7 + 4t, and x_{1} = 1 + (7 – 4t) – t = 8 – 5t. Thus,
\vec{x} = \left [ \begin{matrix} 8 – 5t \\ -7 + 4t \\ t \end{matrix} \right ] = \left [ \begin{matrix} 8 \\ -7 \\ 0 \end{matrix} \right ] + t \left [ \begin{matrix} -5 \\ 4 \\ 1 \end{matrix} \right ] ,\ \ \ \ \ t \in \mathbb{R}