Question 3.7.5: Let A = [1 1 1 -1 -2 3 -2 -4 6] and b = [1 6 12]. Use an LU-...

Let A = \left [ \begin{matrix} 1 & 1 & 1 \\ -1 & -2 & 3 \\ -2 & -4 & 6 \end{matrix} \right ] and \vec{b} = \left [ \begin{matrix} 1 \\ 6 \\ 12 \end{matrix} \right ] . Use an LU-decomposition to solve A\vec{x} = \vec{b}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We first find an LU-decomposition for A. Row reducing gives

\left [ \begin{matrix} 1 & 1 & 1 \\ -1 & -2 & 3 \\ -2 & -4 & 6 \end{matrix} \right ] \begin{matrix} \\ R_{2} + R_{1} \\R_{3} + 2 R_{1} \end{matrix} \sim \left [ \begin{matrix} 1 & 1 & 1 \\ 0 & -1 & 4 \\ 0 & -2 & 8 \end{matrix} \right ] \begin{matrix} \\ \\R_{3} – 2R_{2} \end{matrix} \sim \left [ \begin{matrix} 1 & 1 & 1 \\ 0 & -1 & 4 \\ 0 & 0 & 0 \end{matrix} \right ] = U

From our elementary row operations, we find that L = \left [ \begin{matrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 2 & 1 \end{matrix} \right ] .

We let \vec{y} = U\vec{x} and solve L\vec{y} = \vec{b}. This gives

                            y_{1} = 1

                -y_{1} + y_{2} = 6

   -2y_{1} + 2y_{2} + y_{3} = 12

Hence, y_{1} = 1, y_{2} = 6 + 1 = 7, and y_{3} = 12 + 2 – 14 = 0. Next we solve U\vec{x} = \left [ \begin{matrix} 1 \\ 7 \\ 0 \end{matrix} \right ] .

     x_{1} + x_{2} + x_{3} = 1

          -x_{2} + 4x_{3} = 7

                       0x_{3} = 0

This gives x_{3} = t \in \mathbb{R}, x_{2} = -7 + 4t, and x_{1} = 1 + (7 – 4t) – t = 8 – 5t. Thus,

\vec{x} = \left [ \begin{matrix} 8 – 5t \\ -7 + 4t \\ t \end{matrix} \right ] = \left [ \begin{matrix} 8 \\ -7 \\ 0 \end{matrix} \right ] + t \left [ \begin{matrix} -5 \\ 4 \\ 1 \end{matrix} \right ] ,\ \ \ \ \ t \in \mathbb{R}

Related Answered Questions

Taking dot products of the rows of the first matri...
Row reducing and keeping track of our row operatio...
By row reducing, we get \left [ \begin{matr...