Question 3.6.5: Let A = [1 2 1 2 4 4]. Find a sequence of elementary matrice...

Let A = \left [ \begin{matrix} 1 & 2 & 1 \\ 2 & 4 & 4 \end{matrix} \right ] . Find a sequence of elementary matrices E_{1}, . . ., E_{k} such that E_{k} . . . E_{1}A is the reduced row echelon form of A.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We row reduce A keeping track of our elementary row operations:

\left [ \begin{matrix} 1 & 2 & 1 \\ 2 & 4 & 4 \end{matrix} \right ] \begin{matrix} \\ R_{2} – 2R_{1}\end{matrix} \sim \left [ \begin{matrix} 1 & 2 & 1 \\ 0 & 0 & 2 \end{matrix} \right ] \begin{matrix} \\ \frac{1}{2}R_{2} \end{matrix} \sim \left [ \begin{matrix} 1 & 2 & 1 \\ 0 & 0 & 1 \end{matrix} \right ] \begin{matrix} R_{1} – R_{2} \\ \\ \end{matrix} \sim \left [ \begin{matrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{matrix} \right ]

The first elementary row operation is R_{2} – 2R_{1}, so E_{1} = \left [ \begin{matrix} 1 & 0 \\ -2 & 1 \end{matrix} \right ].

The second elementary row operation is \frac{1}{2}R_{2}, so E_{2} = \left [ \begin{matrix} 1 & 0 \\ 0 & 1/2 \end{matrix} \right ] .

The third elementary row operation is R_{1} – R_{2}, so E_{3} = \left [ \begin{matrix} 1 & -1 \\ 0 & 1 \end{matrix} \right ] .

Thus, E_{3} E_{2} E_{1} A= \left [ \begin{matrix} 1 & -1 \\ 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 \\ 0 & 1/2 \end{matrix} \right ]\left [ \begin{matrix} 1 & 0 \\ -2 & 1 \end{matrix} \right ]\left [ \begin{matrix} 1 & 2 & 1 \\ 2 & 4 & 4 \end{matrix} \right ] = \left [ \begin{matrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] .

Related Answered Questions

Taking dot products of the rows of the first matri...
Row reducing and keeping track of our row operatio...
By row reducing, we get \left [ \begin{matr...