Question 9.4.1: Let A = [5 -6 3 -1]. Find its eigenvectors and diagonalize o...

Let A = \left [ \begin{matrix} 5 & -6 \\ 3 & -1 \end{matrix} \right ]. Find its eigenvectors and diagonalize over \mathbb{C}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We have

C(\lambda ) = det(A − \lambda I) = \left | \begin{matrix} 5 – \lambda & -6 \\ 3 & -1 – \lambda \end{matrix} \right | = \lambda ^2 − 4\lambda + 13

So, by the quadratic formula, we get that the eigenvalues of A are \lambda _1 = 2 + 3i and \lambda _2 = 2 − 3i.

For \lambda _1 = 2 + 3i,

A − \lambda _{1}I = \left [ \begin{matrix} 3 – 3i & -6 \\ 3 & -3 – 3i \end{matrix} \right ] \sim \left [ \begin{matrix} 1 & -(1 + i) \\ 0 & 0 \end{matrix} \right ]

Hence, an eigenvector corresponding to \lambda _1 = 2 + 3i is z_1 = \left [ \begin{matrix} 1 + i \\ 1 \end{matrix} \right ].

For \lambda _2 = 2 − 3i,

A − \lambda _{2}I = \left [ \begin{matrix} 3 + 3i & -6 \\ 3 & -3 + 3i \end{matrix} \right ] \sim \left [ \begin{matrix} 1 & -(1 – i) \\ 0 & 0 \end{matrix} \right ]

Thus, an eigenvector corresponding to \lambda _2 = 2 − 3i is z_2 = \left [ \begin{matrix} 1 – i \\ 1 \end{matrix} \right ].

It follows that A is diagonalized to \left [ \begin{matrix} 2 + 3i & 0 \\ 0 & 2 – 3i \end{matrix} \right ] by P = \left [ \begin{matrix} 1 + i & 1 – i \\ 1 & 1 \end{matrix} \right ].

Related Answered Questions