Question 3.7.4: Let B = [2 1 -1 -4 3 3 6 8 -3] and b = [3 -13 4]. Use an LU-...

Let B = \left [ \begin{matrix} 2 & 1 & -1 \\ -4 & 3 & 3 \\ 6 & 8 & -3 \end{matrix} \right ] and \vec{b} = \left [ \begin{matrix} 3 \\ -13 \\ 4 \end{matrix} \right ] .  Use an LU-decomposition of B to solve B\vec{x} = \vec{b}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In Example 3.7.2 we found an LU-decomposition of B. We write B\vec{x} = \vec{b} as LU\vec{x} = \vec{b} and take \vec{y} = U\vec{x}. Writing out the system L\vec{y} = \vec{b}, we get

                   y_{1} = 3

          -2y_{1} + y_{2} = -13

3y_{1} + y_{2} + y_{3} = 4

Using forward-substitution, we find that y_{1} = 3, so y_{2} = -13 + 2(3) = -7 and y_{3} = 4 – 3(3) – (-7) = 2. Hence, \vec{y} = \left [ \begin{matrix} 3 \\ -7 \\ 2 \end{matrix} \right ] .

Thus, our system U\vec{x} = \vec{y} is

2x_{1} + x_{2} – x_{3} = 3

          5x_{2} + x_{3} = -7

               -x_{3} = 2

Using back-substitution, we get x_{3} = -2, 5x_{2} = -7 – (-2) ⇒ x_{2} = -1 and 2x_{1} = 3 – (-1) + (-2) ⇒ x_{1} = 1. Thus, the solution is \vec{x} = \left [ \begin{matrix} 1 \\ -1 \\ -2 \end{matrix} \right ] .

Related Answered Questions

Taking dot products of the rows of the first matri...
Row reducing and keeping track of our row operatio...
By row reducing, we get \left [ \begin{matr...